Skip to main content

Adaptation and extinction in changing environments

  • Chapter
Environmental Stress, Adaptation and Evolution

Part of the book series: Experientia Supplementum ((EXS,volume 83))

Summary

The extinction risk of a population is determined by its demographic properties, the environmental conditions to which it is exposed, and its genetic potential to cope with and adapt to its environment. All these factors may have stochastic as well as directional components. The present chapter reviews several types of models concerned with the vulnerability of small populations to demographic stochasticity and to random and directional changes of the environment. In particular, the influence of mutation and genetic variability on the persistence time of a population is explored, critical rates for environmental change are estimated beyond which extinction on time scales of tens to a few thousand generations is virtually certain, and the extinction risks caused by the above mentioned factors are compared.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barton, N.H. (1990) Pleiotropic models of quantitative variation. Genetics 124:773–782.

    PubMed  CAS  Google Scholar 

  • Boag, P.T. and Grant, P.R. (1981) Intense natural selection in a population of Darwin’s finches (Geospizinae). Science 214: 82–85.

    PubMed  CAS  Google Scholar 

  • Bürger, R. (1986) Constraints for the evolution of functionally coupled characters: A nonlinear analysis of a phenotypic model. Evolution 40:182–193.

    Google Scholar 

  • Bürger, R. (1989) Linkage and the maintenance of heritable variation by mutation-selection balance. Genetics 121: 175–184.

    PubMed  Google Scholar 

  • Bürger, R. and Hofbauer, J. (1994) Mutation load and mutation-selection-balance in quantitative genetic traits. J. Math. Biol. 32:193–218.

    PubMed  Google Scholar 

  • Bürger, R. and Lande, R. (1994) On the distribution of the mean and variance of a quantitative trait under mutation-selection-drift balance. Genetics 138: 901–912.

    PubMed  Google Scholar 

  • Bürger, R. and Lynch, M. (1995) Evolution and extinction in a changing environment: A quantitative-genetic analysis. Evolution 49:151–163.

    Google Scholar 

  • Bürger, R., Wagner, G.P. and Stettinger, E (1989) How much heritable variation can be main-tained in finite populations by mutation-selection balance? Evolution 43:1748–1766.

    Google Scholar 

  • Butcher, D. (1995) Muller’s ratchet, epistasis and mutation effects. Genetics 141:431–437.

    PubMed  CAS  Google Scholar 

  • Caballero, A. and Keightley, P.D. (1994) A pleiotropic nonadditive model of variation in quanti-tative traits. Genetics 138:883–900.

    PubMed  CAS  Google Scholar 

  • Charlesworth, B. (1993a) The evolution of sex and recombination in a varying environment. J. Heredity 84:345–450.

    CAS  Google Scholar 

  • Charlesworth, B. (1993b) Directional selection and the evolution of sex and recombination. Genet. Res. 61:205–224.

    PubMed  CAS  Google Scholar 

  • Charlesworth, D., Morgan, M.T. and Charlesworth, B. (1993) Mutation accumulation in finite outbreeding and inbreeding populations. Genet. Res. 61: 39–56.

    Google Scholar 

  • Crow, J.F. and Kimura, M. (1979) Efficiency of truncation selection. Proc. Natl. Acad. Sci. USA 76:396–399.

    PubMed  CAS  Google Scholar 

  • Crow, J.F. and Simmons, M.J. (1983) The mutation load in Drosophila. In:M. Ashbumer, H.L. Carson and J.N. Thompson Jr. (eds): The Genetics and Biology of Drosophila, Volume 3c. Academic Press, New York, pp. 1–35.

    Google Scholar 

  • Eisen, E.J. (1980) Conclusions from long-term selection experiments with mice. Z.Tierzüchtg. Züchtungsbiol. 97: 305–319.

    Google Scholar 

  • Endler, J.A. (1986) Natural Selection in the Wild. Princeton University, Princeton.

    Google Scholar 

  • Engen, S. and Bakke, O. (1996) Diffusion approximations to discrete population models; preprint. Felsenstein, J. (1974) The evolutionary advantage of recombination. Genetics 78:737–756.

    Google Scholar 

  • Foley, P. (1994) Predicting extinction times from environmental stochasticity and carrying capacity. Conseil). Biol. 8:124–137.

    Google Scholar 

  • Frankham, R. (1988) Exchanges in the rRNA multigene family as a source of genetic variation. In: B.S. Weir, E.J. Eisen, M.M. Goodman and G. Namkoong (eds): Proceedings of the Second International Conference on Quantitative Genetics. Sinauer, Sunderland, MA; pp. 236–242.

    Google Scholar 

  • Frankham, R. (1995a) Conservation genetics. Annu. Rev. Genetics 29:305–327.

    CAS  Google Scholar 

  • Frankham, R. (1995b) Effective population size/adult population size ratios in wildlife: A review. Genet. Res. 66:95–107.

    Google Scholar 

  • Fry, J.D., deRonde, K.A. and Mackay, T.F.C. (1995) Polygenic mutation in Drosophila melanogaster: genetic analysis of selection lines. Genetics 139: 1293–1307.

    PubMed  CAS  Google Scholar 

  • Gabriel, W and Bürger, R. (1992) Survival of small populations and demographic stochasticity. Theor. Popul. Biol. 41:44–71.

    PubMed  CAS  Google Scholar 

  • Gabriel, W and Bürger, R. (1994) Extinction risk by mutational meltdown: Synergistic effects between population regulation and genetic drift. In:V. Loeschcke, J. Tomiuk and S.K. Jain (eds): Conservation Genetics. Birkhäuser, Basel, pp. 69–84.

    Google Scholar 

  • Gabriel, W, Bürger, R. and Lynch, M. (1991) Population extinction by mutational load and demographic stochasticity. In. A. Seitz and v Loeschcke (eds): Species Conservation: A Population-BiologicalApproach. Birkhäuser, Basel, pp. 49–59.

    Google Scholar 

  • Gabriel, W, Lynch, M. and Bürger, R. (1993) Muller’s ratchet and mutational meltdowns. Evolution 47:1744–1757.

    Google Scholar 

  • Gomulkiewicz, R. and Holt, R.D. (1995) When does evolution by natural selection prevent extinction? Evolution 49:201–207.

    Google Scholar 

  • Goodman, D. (1987a) The demography of change extinction. In: M.E. Soulé (ed.): Viable Populations for Conservation. Cambridge University Press, Cambridge, pp. 11–34.

    Google Scholar 

  • Goodman, D. (1987b) Consideration of stochastic demography in the design and management of biological reserves. Natural Resource Modeling 1: 205–234.

    Google Scholar 

  • Grass, D. (1996) Aussterbezeiten bei diskreten und stetigen Populationsmodellen im Vergleich. Master’s thesis, University of Vienna.

    Google Scholar 

  • Haigh, J. (1978) The accumulation of deleterious genes in a population. Theor. Pop. Biol. 14:251–267.

    CAS  Google Scholar 

  • Haldane, J.B.S. (1937) The effect of variation on fitness. Am. Nat. 71: 337–349.

    Google Scholar 

  • Hanson, F.B. and Tuckwell, H.C. (1978) Persistence times of populations with large random fluctuations. Theor. Pop. Biol. 14:46–61.

    CAS  Google Scholar 

  • Higgs, P.G. (1994) Error thresholds and stationary mutant distributions in multi-locus diploid genetics models. Genet. Res. 63:63–78.

    Google Scholar 

  • Houle, D., Hoffmaster, D.K., Assimacopolous, S. and Charlesworth, B. (1992) The genomic mutation rate for fitness in Drosophila. Nature 359: 58–60.

    PubMed  CAS  Google Scholar 

  • Houle, D., Morikawa, B. and Lynch, M. (1996) Comparing mutational variabilities. Genetics 143:1467–1483.

    PubMed  CAS  Google Scholar 

  • Huey, R.B. and Kingsolver, J.G. (1993) Evolution of resistance to high temperature in ectotherms. Am. Nat. 142:S21–S46.

    Google Scholar 

  • Jones, L.P., Frankham, R. and Barker, J.S.F. (1968) The effects of population size and selection intensity in selection for a quantitative character in Drosophila. Genet. Res. 12:249–266.

    CAS  Google Scholar 

  • Kareiva, P.M., Kingsolver, J.G. and Huey, R.B. (eds) (1993) Biotic Interactions and Global Change. Sinauer, Sunderland, MA.

    Google Scholar 

  • Karlin, S. and Taylor, H.M. (1975) A first Course in Stochastic Processes Second Edition Academic Press, New York.

    Google Scholar 

  • Keiding, N. (1975) Extinction and exponential growth in random environments. Theor. Pop. Biol. 8:49–63.

    CAS  Google Scholar 

  • Keightley, P.D. (1994) The distribution of mutation effects on Viability in D. melanogaster. Genetics 138:1315–1322.

    PubMed  CAS  Google Scholar 

  • Keightley, P.D. and Hill, W.G. (1989) Quantitative genetic variability maintained by mutation-stabilizing selection balance: Sampling variation and response to subsequent directional selection. Genet. Res. 54:45–57.

    PubMed  CAS  Google Scholar 

  • Keightley, P.D. and Hill, W.G. (1990) Variation maintained in quantitative traits with mutation-selection balance: Pleiotropic side-effects on fitness traits. Proc. R. Soc. Lond. B. 242: 95–100.

    Google Scholar 

  • Keightley, P.D., Hardge, T., May, L. and Bulfield, G. (1996) A genetic map of quantitative trait loci for body weight in the mouse. Genetics 142:227–235.

    PubMed  CAS  Google Scholar 

  • Kibota, T.T. and Lynch, M. (1996) The deleterious genomic mutation rate for overall fitness in Escherichia colt. Nature 381:694–696.

    PubMed  CAS  Google Scholar 

  • Kimura, M., Maruyama, T. and Crow, J.F. (1963) The mutation load in small populations. Genetics 48:1303–1312.

    PubMed  CAS  Google Scholar 

  • Kondrashow, A.S. (1994) Muller’s ratchet under epistatic selection. Genetics 136:1469–1473.

    Google Scholar 

  • Kondrashow, A.S. and Turelli, M. (1992) Deleterious mutations, apparent stabilizing selection and the maintenance of quantitative variation. Genetics 132:603–618.

    Google Scholar 

  • Lande, R. (1976) Natural selection and random genetic drift in phenotypic evolution. Evolution 30:314–334.

    Google Scholar 

  • Lande, R. (1988) Genetics and demography in biological conservation. Science 241:1455–1460.

    PubMed  CAS  Google Scholar 

  • Lande, R. (1993) Risks of population extinction from demographic and environmental stochasticity and random catastrophes. Am. Nat. 142: 911–927.

    Google Scholar 

  • Lande, R. (1994) Risk of population extinction from new deleterious mutations. Evolution 48:1460–1469.

    Google Scholar 

  • Lande, R. (1995) Mutation and conservation. Conserv. Biol. 9:782–791.

    Google Scholar 

  • Lande, R. and Shannon, S. (1996) The role of genetic variation in adaptation and population persistence in a changing environment. Evolution 50:434–437.

    Google Scholar 

  • Leigh, E.G. (1981) The average lifetime of a population in a varying environment. J. Theor. Biol. 90:213–239.

    PubMed  Google Scholar 

  • Long, A.D., Mullaney, S.L., Reid, L.A., Fry, J.D., Langley, C.H. and Mackay, T.F.C. (1995) High-resolution mapping of genetics factors affecting abdominal bristle number in Drosophila melanogaster. Genetics 139:1273–1291.

    PubMed  CAS  Google Scholar 

  • López, M.A. and López-Fanjul, C. (1993a) Spontaneous mutation for a quantitative trait in Drosophila melanogaster. I. Response to artificial selection. Genet. Res. 61:107–116.

    PubMed  Google Scholar 

  • López, M.A. and López-Fanjul, C. (1993b) Spontaneous mutation for a quantitative trait in Drosophila melanogaster. II. Distribution of mutant effects on the trait and fitness. Genet. Res. 61:117–126.

    PubMed  Google Scholar 

  • Ludwig, D. (1974) Stochastic Population Theories. Lecture Notes in Biomathematics 3. Springer-Verlag, Berlin.

    Google Scholar 

  • Ludwig, D. (1976) A singular perturbation problem in the theory of population extinction. SIAM-AMS Proceedings of Symposia on Applied Mathematics 10: 87–104.

    Google Scholar 

  • Ludwig, D. (1996) The distribution of population survival times. Am. Nat. 147: 506–526.

    Google Scholar 

  • Lyman, R.F., Lawrence, E, Nuzhdin, S.V. and Mackay, T.F.C. (1996) Effects of single P element insertions on bristle number and viability in Drosophila melanogaster. Genetics 143:277–292.

    PubMed  CAS  Google Scholar 

  • Lynch, M. (1988) The rate of polygenic mutation. Genet. Res. 51:137–148.

    PubMed  CAS  Google Scholar 

  • Lynch, M. (1996) A quantitative-genetic perspective on conservation issues. In: J. Avise and J. Hamrick (ed): Conservation Genetics: Case Histories from Nature. New York: Chapman & Hall, New York, pp. 471–501.

    Google Scholar 

  • Lynch, M. and Gabriel, W (1990) Mutation load and the survival of small populations. Evolution 44:1725–1737.

    Google Scholar 

  • Lynch, M. and Hill, W.G. (1986) Phenotypic evolution by neutral mutation. Evolution 40: 915–935.

    Google Scholar 

  • Lynch, M. and Lande, R. (1993) Evolution and extinction in response to environmental change. In: P.M. Kareiva, J.G. Kingsolver and R.B. Huey (eds): Biotic Interactions and Global Change. Sinauer, Sunderland, MA, pp. 234–250.

    Google Scholar 

  • Lynch, M., Gabriel, W and Wood, A.M. (1991) Adaptive and demographic responses of plank-ton populations to environmental change. Limnol. Oceanogr. 36: 1301–1312.

    Google Scholar 

  • Lynch, M., Bürger, R., Butcher, D. and Gabriel, W. (1993) The mutational meltdown in asexual populations. J. Heredity 84:339–344.

    CAS  Google Scholar 

  • Lynch, M., Conery, J. and Bürger, R. (1995a) Mutational meltdowns in sexual populations. Evolution 49:1067–1080.

    Google Scholar 

  • Lynch, M., Conery, J. and Bürger, R. (1995b) Mutation accumulation and the extinction of small populations. Am. Natur. 146: 489–518.

    Google Scholar 

  • MacArthur, R.H. and Wilson, E.O. (1967) The Theory of Island Biogeography. Princeton University Press, Princeton.

    Google Scholar 

  • Mackay, T.F.C., Lyman, R. and Jackson, M.S. (1992a) Effects of P elements on quantitative traits in Drosophila melanogaster. Genetics 130:315–332.

    PubMed  CAS  Google Scholar 

  • Mackay, T.F.C., Lyman, R., Jackson, M.S., Terzian, C. and Hill, W.G. (1992b) Polygenic mutation in Drosophila melanogaster: Estimates from divergence among inbred strains. Evolution 46:300–316.

    Google Scholar 

  • Mackay, T.F.C., Lyman, R.F. and Hill, W.G. (1995) Polygenic mutation in Drosophila melano-gaster: Non-linear divergence among unselected strains. Genetics 139: 849–859.

    PubMed  CAS  Google Scholar 

  • May, R.M. (1981) Models for single populations: In: R.M. May (ed.) Theoretical Ecology. Blackwell, Oxford, pp. 5–29.

    Google Scholar 

  • May, R.M. and Oster, G.F. (1976) Bifurcations and dynamic complexity in simple ecological models. Am. Nat. 110: 573–599.

    Google Scholar 

  • Maynard Smith, J. (1978) The Evolution of Sex. Cambridge University Press, Cambridge.

    Google Scholar 

  • Melzer, A.L. and Koeslag, J.H. (1991) Mutations do not accumulate in asexual isolates capable of growth and extinction — Muller’s ratchet reexamined. Evolution 45:649–655.

    Google Scholar 

  • Mousseau, T.A. and Roff, D.A. (1987) Natural selection and the heritability of fitness com-ponents. Heredity 59:181–197.

    PubMed  Google Scholar 

  • Mukai, T. (1965) The genetic structure of natural populations of Drosophila melanogaster. I. Spontaneous mutation rate of polygenes controlling viability. Genetics 50: 1–19.

    Google Scholar 

  • Mukai, T. (1979) Polygenic mutations. In: J.N. Thompson, Jr. and J.M. Thoday (eds): Quantitative Genetic Variation. Academic Press, New York, pp. 177–196.

    Google Scholar 

  • National Research Council (1995) Science and the Endangered Species Act. National Academy Press, Washington, DC.

    Google Scholar 

  • Nobile, A.G., Ricciardi, L.M. and Sacerdote, L. (1985) Exponential trends of first-passage time densities for a class of diffusion processes with steady-state distributions. J Applied Prob. 22:611–618.

    Google Scholar 

  • Nuzhdin, S.V., Fry, J.D. and Mackay, T F C (1995) Polygenic mutation in Drosophila melano-gaster: The causal relationship of bristle number to fitness. Genetics 139:861–872.

    PubMed  CAS  Google Scholar 

  • Pease, C.M., Lande, R. and Bull, J.J. (1989) A model of population growth, dispersal and evolution in a changing environment. Ecology 70:1657–1664.

    Google Scholar 

  • Peck, R.R., Barreau, G. and Heath, S.C. (1997) Imperfect genes, Fisherian mutation and the evolution of sex. Genetics 145:1171–1199.

    PubMed  CAS  Google Scholar 

  • Richter-Dyn, N. and Goel, N.S. (1972) On the extinction of a colonizing species. Theor. Pop. Biol. 3:406–433.

    CAS  Google Scholar 

  • Roff, D.A. and Mousseau, T.A. (1987) Quantitative genetics and fitness: Lessons from Drosophila. Heredity 58: 181–197.

    Google Scholar 

  • Schultz, S.T. and Lynch, M. (1997) Mutation and extinction: The role of variable mutational effects, synergistic epistasis, beneficial mutations, and degree of outcrossing. Evolution; in press.

    Google Scholar 

  • Schultz, S.T., Willis, J. and Lynch, M. (1997) Spontaneous deleterious mutation in Arabidopsis. Science; in press.

    Google Scholar 

  • Shaffer, M.L. (1981) Minimum population sizes for species conservation. Bio Science 31: 131–134.

    Google Scholar 

  • Shaffer, M.L. (1987) Minimum viable populations: Coping with uncertainty. In: M.E. Soulé (ed.): Viable Populations for Conservation. Cambridge University Press, Cambridge, pp. 69–86.

    Google Scholar 

  • Slatkin, M. and Lande, R. (1976) Niche width in a fluctuating environment-density independent model. Am. Nat. 110:31–55.

    Google Scholar 

  • Stephan, W, Chao, L. and Smale, J.G. (1993) The advance of Muller’s ratchet in a haploid asexual population: Approximate solutions based on diffusion theory. Genet. Res. 61: 225–231.

    PubMed  CAS  Google Scholar 

  • Turelli, M. (1977) Random environments and stochastic calculus. Theor. Pop. Biol. 12:140178.

    Google Scholar 

  • Turelli, M. (1984) Heritable genetic variation via mutation-selection balance: Lerch’s zeta meets the abdominal bristle. Theor. Pop. Biol. 25:138–193.

    CAS  Google Scholar 

  • Turelli, M. (1985) Effects of pleiotropy concerning mutation-selection balance for polygenic traits. Genetics 111:165–195.

    PubMed  CAS  Google Scholar 

  • Wagner, G.P. (1988) The influence of variation and of developmental constraints on the rate of multivariate phenotypic evolution. J. Evol. Biol. 1: 45–66.

    Google Scholar 

  • Wagner, G.P. (1989) Multivariate mutation-selection balance with constrained pleiotropic effects. Genetics 122: 223 —234.

    PubMed  Google Scholar 

  • Wagner, G.P. and Gabriel, W. (1990) Quantitative variation in finite parthenogenetic populations: What stops Muller’s ratchet in the absence of recombination? Evolution 44: 715–731.

    Google Scholar 

  • Weis, A.E., Abrahamson, W.G. and Anderson, M.C. (1992) Variable selection in Eurosta ‘s gall size. I. The extent and nature of variation in phenotypic selection. Evolution 46:1674–1697.

    Google Scholar 

  • Yoo, B.H. (1980) Long-term selection for a quantitative character in large replicate populations of Drosophila melanogaster. I. Response to selection. Genet. Res. 35:1–17. II. Lethals and visible mutants with large effects. Ibid., pp. 19–31.

    Google Scholar 

  • Zeng, Z.-B. and Cockerham, C.C. (1991) Variance of neutral genetic variation within and between populations for a quantitative character. Genetics 129:535–553.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Basel AG

About this chapter

Cite this chapter

Bürger, R., Lynch, M. (1997). Adaptation and extinction in changing environments. In: Bijlsma, R., Loeschcke, V. (eds) Environmental Stress, Adaptation and Evolution. Experientia Supplementum, vol 83. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8882-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8882-0_12

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9813-3

  • Online ISBN: 978-3-0348-8882-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics