Skip to main content

Genetic similarity, parasitism, and metapopulation structure in a freshwater bryozoan

  • Chapter

Part of the book series: EXS ((EXS,volume 82))

Summary

Many freshwater organisms exhibit mixed life histories that include sexual and asexual phases of reproduction. Ecological and genetic studies have revealed insights about the consequences of mixed life histories for populations of planktonic cladocerans and rotifers and aquatic macrophytes. However, little is known of the consequences of mixed life histories for populations of benthic colonial freshwater invertebrates. A series of investigations of the ecology and genetics of local populations of the freshwater bryozoan, Cristatella mucedo, are reviewed in this context. Asexual reproduction achieved by colony growth, fission, and the production of numerous resistant statoblasts promotes the persistence and dispersal of clones and leads to extensive genetic similarity within and between populations in southern England. Genetic characterization of parent and larval colonies indicates that sexual reproduction results in inbreeding amongst genetically similar clonal stock within sites and so generates little genetic variation. Ecological sampling confirms that sexual reproduction is limited in duration and suggests that in some sites and/or years, a sexual phase is foregone entirely. Myxozoans parasitize these genetically similar host populations and apparently indiscriminately attack the highly-related bryozoan clones present within a site. As myxozoans adversely affect host fitness they may, in part, be responsible for the drastic reductions and occasional extinctions observed in C. mucedo populations. The presence of harmful parasites and the relative insignificance of sex suggest that host-parasite coevolution as predicted by the Red Queen does not apply in this system. Rather, evidence indicates that a metapopulation structure allows the persistence of genetically-similar sub-populations as long as rates of asexual replication and dispersal are sufficient to provide a means of escape from parasites and other adverse conditions. Thus metapopulation structure may provide at least a short-term alternative to the regular production of genetic novelty through sex. Perhaps due to features such as a sessile nature, asexual replication via vegetative growth, and indirect fertilization, the consequences of mixed life histories for bryozoans of southern England contrast with those in planktonic cladocerans and rotifers but show some similarities to those of aquatic macrophytes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrahamson, W.G. (1980) Demography and vegetative reproduction. In: O.T. Solbrig (ed.): Demography and Evolution in Plant Populations. Blackwell Scientific Publications, Oxford, pp 89–106.

    Google Scholar 

  • Aspinwall, N. and Christian, T. (1992) Clonal structure, genotypic diversity, and seed production in populations of Filipendula rubra (Rosaceae) from the northcentral United States. Am. J.Bot. 79:294–299.

    Article  Google Scholar 

  • Backus, B.T. and Mukai, H. (1987) Chromosomal heteromorphism in a Japanese population of Pectinatella gelatinosa and karyotypic comparison with some other phylactolaemate bryozoans. Genetica 73:189–196.

    Article  Google Scholar 

  • Bell, G. (1982) The Masterpiece of Nature - The Evolution and Genetics of Sexuality. University of California Press, Berkeley, California.

    Google Scholar 

  • Bierzychudek, P. (1987) Patterns in plant parthenogenesis. In: S.C. Stearns (ed.): The Evolution of Sex and Its Consequences. Birkhàuser Verlag, Basel, pp 197–217.

    Google Scholar 

  • Brien, P. and Mordant, C. (1956) Relations entre les reproduction sexuée et asexuée a propose de phylactolaemates. Annls Soc. R. Zool. Belg. 86:169–189.

    Google Scholar 

  • Brown, C.J.D. (1933) A limnological study of certain fresh-water Polyzoa with special reference to their statoblasts. Trans. Am. Microsc. Soc. 52:271–313.

    Article  CAS  Google Scholar 

  • Bushnell, J.H. (1973) The freshwater Ectoprocta: A zoogeographical discussion. In: G.P. Larwood (ed.): Living and Fossil Bryozoa. Academic Press, London, pp 503–521.

    Google Scholar 

  • Buss, L.W. (1979) Habitat selection, directional growth and spatial refuges: Why colonial animals have more hiding places. In: G. Larwood and B.R. Rosen (eds): Biology and Systematics of Colonial Organisms. Academic Press, London, pp 459–497.

    Google Scholar 

  • Canning, E.U., Okamura, B. and Curry, A. (1996) Development of a myxozoan parasite Tetra-capsula bryozoides n.g., n.sp. in Cristatella mucedo (Bryozoa, Phylactolaemata). Folia Parasitol. 43:249–261.

    Google Scholar 

  • Carvalho, G.R. (1987) The clonal ecology of Daphnia magna (Crustacea: Cladocera) II. Thermal differentiation among seasonal clones. J. Anim. Ecol. 56:469–478.

    Article  Google Scholar 

  • Carvalho, G.R. (1994) Evolutionary genetics of aquatic clonal invertebrates: Concepts, problems and prospects. In: A. Beaumont (ed.): Genetics and Evolution of Aquatic Organisms. Chapman and Hall, London, pp 291–323.

    Google Scholar 

  • Carvalho, G.R. and Crisp, D.J. (1987) The clonal ecology of Daphnia magna (Crustacea: Cladocera). I. Temporal changes in the clonal structure of a natural population. J.Anim. Ecol. 56:453–468.

    Article  Google Scholar 

  • Chapco, W., Ashton, N.W., Martel, R.K.B. and Antonishyn, N. (1992) A feasibility study of the use of randomly amplified polymorphic DNA in the population genetics and systematics of grasshoppers. Genome 35:569–574.

    Article  PubMed  CAS  Google Scholar 

  • Cook, R.E. (1987) Vegetative growth and genetic mobility in some aquatic weeds. In: K.M. Urbanska (ed.): Differentiation Patterns in Higher Plants. Academic Press, London, pp 217–225.

    Google Scholar 

  • DeMeester, L. (1991) An analysis of the phototactic behaviour of Daphnia magna clones and their sexual descendants. Hydrobiologia 225:217–227.

    Article  Google Scholar 

  • Denny, M.W. and Shibata, M.F. (1989) Consequences of surf-zone turbulence for settlement and external fertilization. Amer. Nat. 117:838–840.

    Google Scholar 

  • Dias, P.C. (1996) Sources and sinks in population biology. Trends Ecol. Evol. 11:326–330.

    Article  PubMed  CAS  Google Scholar 

  • Dybdahl, M.F. and Lively, C.M. (1995) Host-parasite interactions: Infection of common clones in natural populations of a freshwater snail (Potamopyrgus antipodarum). Proc. R. Soc. Lond. B 260:99–103.

    Article  Google Scholar 

  • Ebert, D. and Hamilton, W.D. (1996) Sex against virulence: The coevolution of parasitic diseases. Trends. Ecol. Evol. 11:79–82.

    Article  PubMed  CAS  Google Scholar 

  • Eckert, C.G. and Barrett, S.C.H. (1993) Clonal reproduction and patterns of genotypic diversity in Decodon verticillatus (Lythraceae). Am. J. Bot. 80:1175–1182.

    Article  Google Scholar 

  • Ellstrand, N.C. and Roose, M.L. (1987) Patterns of genotypic diversity in clonal plant species. Am. J. Bot. 74:123–131.

    Article  Google Scholar 

  • Excoffier, L., Smouse, RE. and Quattro, J.M. (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics 131:479–491.

    PubMed  CAS  Google Scholar 

  • Ghiselin, M.T. (1974) The Economy of Nature and the Evolution of Sex. University of California Press, Berkeley, California.

    Google Scholar 

  • Gotelli, N.J. (1995) A Primer of Ecology. Sinauer Associates, Inc., Sunderland, Massachusetts.

    Google Scholar 

  • Grosberg, R.K., Levitan, D.R. and Cameron, B.B. (1996) Characterization of genetic structure and genealogies using RAPD-PCR markers: A random primer for the novice and nervous. In: J.D. Ferraris and S.R. Palumbi (eds): Molecular Zoology: Advances, Strategies and Protocols. Wiley-Liss, New York, pp 67–100.

    Google Scholar 

  • Hamilton, W.D. (1980) Sex versus non-sex versus parasite. Oikos 35:282–290.

    Article  Google Scholar 

  • Hanski, I. (1996) Metapopulation ecology. In: O.E. Rhodes Jr., R.K. Chesser and M.H. Smith (eds): Population Dynamics in Ecological Space and Time. University of Chicago Press, Chicago, pp 13–43.

    Google Scholar 

  • Harris, S.A., Maberly, S.C. and Abbott, R.J. (1992) Genetic variation within and between populations of Myriophyllum alterniflorum DC. Aquat. Bot. 44:1–21.

    Article  Google Scholar 

  • Harrison, S. and Hastings, A. (1996) Genetic and evolutionary consequences of metapopulation structure. Trends Ecol. Evol. 11:180–183.

    Article  PubMed  CAS  Google Scholar 

  • Hebert, P.D.N. (1987) Genotypic characteristics of cyclic parthenogens and their obligately asexual derivatives. In: S.C. Stearns (ed.): The Evolution of Sex and Its Consequences. Birkhauser Verlag, Basel, pp 175–195.

    Google Scholar 

  • Hebert, P.D.N., Ward, R.D. and Weider, L.J. (1988) Clonal-diversity patterns and breeding system variation in Daphnia pulex, an asexual-sexual complex. Evolution 42:147–159.

    Article  Google Scholar 

  • Hollingsworth, P.M., Gornall, R.J. and Preston, C.D. (1995) Genetic variability in British populations of Potamogeton coloratus (Potamogetonaceae).Plant Syst. Evol 197:71–85.

    Article  CAS  Google Scholar 

  • Howard, R.S. and Lively, C.M. (1994) Parasitism, mutation accumulation and the maintenance of sex. Nature 361:554–557.

    Article  Google Scholar 

  • Hughes, R.N. and Cancino, J.M. (1985) An ecological overview of cloning in Metazoa. In: J.B.C. Jackson, L.W. Buss and R.E. Cook (eds): Population Biology and Evolution of Clonal Organisms. Yale University Press, New Haven, Connecticut, pp 153–186.

    Google Scholar 

  • Hurst, L.D. and Peck, J.R. (1996) Recent advances in understanding of the evolution and maintenance of sex. Trends Ecol Evol 11:46–52.

    Article  PubMed  CAS  Google Scholar 

  • Hutchinson, J.E. (1975) A Treatise on Limnology, Vol 3 Limnological Botany. John Wiley and Sons, New York.

    Google Scholar 

  • Jackson, J.B.C. (1985) Distribution and ecology of clonal and aclonal benthic invertebrates. In: J.B.C. Jackson, L.W. Buss and RE. Cook (eds): Population Bioloy and Evolution of Clonal Organisms. Yale University Press, New Haven, Connecticut, pp 297–355.

    Google Scholar 

  • Jaenike, J. (1978) An hypothesis to account for the maintenance of sex within populations. Evol Theory 3:191–194.

    Google Scholar 

  • Jonasson, P.M. (1963) The growth of Plumatella repens and P. fungosa (Bryozoa Ectoprocta) in relation to external factors in Danish eutrophic lakes. Oikos 14:121–137.

    Article  Google Scholar 

  • Jones, C.S., Okamura, B. and Noble, L.R. (1994) Parent and larval RAPD fingerprints reveal outcrossing in freshwater bryozoans. Mol Ecol 3:193–199.

    Article  PubMed  CAS  Google Scholar 

  • Joo, G.-J., Ward, A.K. and Ward, G.M. (1992) Ecology of Pectinatella magnifica (Bryozoa) in an Alabama oxbow lake: Colony growth and association with algae. J. N. Am. Benthol. Soc. 11:324–333.

    Article  Google Scholar 

  • Judson, O.P. (1995) Preserving genes: A model of the maintenance of genetic variation in a metapopulation under frequency-dependent selection. Genet. Res. 65:175–191.

    Article  Google Scholar 

  • King, C.E. (1977) Genetics of reproduction, variation and adaptation in rotifers. Arch. Hydro-biol.Beih. 8:187–201.

    Google Scholar 

  • King, C.E. and Zao, Y. (1987) Coexistence of rotifer (Brachionus plicatilis) clones in Soda Lake, Nevada. Hydrobiologia 147:57–64.

    Article  Google Scholar 

  • Lacourt, A.W. (1968) A monograph of the freshwater Bryozoa - Phylactolaemata. Zoologische Verhandelingen No. 93. Rijksmuseum von Nat. Hist., Leiden.

    Google Scholar 

  • Ladle, R.J., Johnstone, R.A. and Judson, G.P. (1993) Coevolutionary dynamics of sex in a metapopulation: Escaping the Red Queen. Proc. R. Soc. Lond. B 253: 155–160.

    Article  Google Scholar 

  • Les, D.H. (1988) Breeding systems, population structure, and evolution in hydrophilous angio-sperms. Annls Miss. Bot. Gard. 75:819–835.

    Article  Google Scholar 

  • Levitan, D.R., Sewall, M.A. and Chia, F.-S. (1992) How distribution and abundance influence fertilization success in the sea urchin Strongylocentrotus franciscanus. Ecology 13:248–254.

    Article  Google Scholar 

  • Lively, C.M. (1992) Parthenogenesis in a freshwater snail: Reproductive assurance versus parasitic release. Evolution 46:907–913.

    Article  Google Scholar 

  • Lively, C.M. (1996) Through the Looking-Glass: Host-parasite coevolution and sex. Bioscience 46:107–114.

    Article  Google Scholar 

  • Lokker, C., Susko, D., Lovett Doust, L. and Lovett Doust, J. (1994) Population genetic structure of Vallisneria americana, a dioecious clonal macrophyte. Am. J. Bot. 81:1004–1012.

    Article  Google Scholar 

  • Lovett Doust, L. (1981) Population dynamics and local specialization in a clonal perennial (Ranunculus repens). I. The dynamics of ramets in contrasting habitats. J. Ecol. 69:743–755.

    Article  Google Scholar 

  • May, R.M. and Anderson, R.M. (1983) Epidemiology and genetics in the coevolution of parasites and hosts. Proc. R. Soc. Lond. B 219:281–313.

    Article  PubMed  CAS  Google Scholar 

  • Mort, M.A. and Wolf, H.G. (1985) Enzyme variability in large-lake Daphnia populations. Heredity 55:27–36.

    Article  Google Scholar 

  • Mukai, H. (1982) Development of freshwater bryozoans. In: F.W. Harrison and R.R. Cowden (eds): Developmental Biology of Freshwater Invertebrates. Alan R. Liss, New York, pp 535–576.

    Google Scholar 

  • Mukai, H., Karasawa, T. and Matsumoto, Y. (1979) Field and laboratory studies on the growth of Pectinatella gelatinosa Oka, a freshwater bryozoan. Sci. Rep. Fac. Educ. Gunma Univ. 28:27–57.

    Google Scholar 

  • Okamura, B. (1994) Variation in local populations of the freshwater bryozoan Cristatella mucedo. In: P.J. Hayward, J.S. Ryland, and P.D. Taylor (eds): Biology and Paleobiology of Bryozoans. Olsen and Olsen, Fredensborg, Denmark, pp 145–149.

    Google Scholar 

  • Okamura, B. (1996) Occurrence, prevalence and effects of the myxozoan Tetracapsula bryo-zoides Canning, Okamura et Curry parasitic in the freshwater bryozoan Cristatella mucedo Cuvier (Bryozoa, Phylactolaemata). Folia Parasitol. 43:262–266.

    Google Scholar 

  • Okamura, B. and Hatton-Ellis, T. (1995) Population biology of bryozoans: Correlates of sessile, colonial life histories in freshwater habitats. Experientia 51:510–525.

    Article  CAS  Google Scholar 

  • Okamura, B., Jones, C.S. and Noble, L.R. (1993) Randomly amplified polymorphic DNA analysis of clonal population structure and geographic variation in a freshwater bryozoan. Proc. R. Soc. Lond. B 253:147–154.

    Article  CAS  Google Scholar 

  • Pennington, J.T. (1985) The ecology of fertilization of echinoid eggs: The consequences of sperm dilution, adult aggregation, and synchronous spawning. Biol. Bull. Woods Hole 183:417–430.

    Article  Google Scholar 

  • Piquot, Y., Saumitou-Laprade, P., Petit, D., Vernet, P. and Epplen, J.T. (1996) Genotypic diversity revealed by allozymes and oligonucleotide DNA fingerprinting in French populations of the aquatic macrophyte Sparganium erectum. Mol. Ecol. 5:251–258.

    PubMed  CAS  Google Scholar 

  • Pulliam, H.R. (1996) Sources and sinks: Empirical evidence and population consequences. In: O.E. Rhodes Jr., R.K. Chesser and M.H. Smith (eds): Population Dynamics in Ecological Space and Time. University of Chicago Press, Chicago, pp 45–69.

    Google Scholar 

  • Rackham, O. (1986) The History of the Countryside. J.M. Dent and Sons, Ltd., London.

    Google Scholar 

  • Rubin, J.A. (1987) Growth and refuge location in continuous, modular organisms: Experimental and computer simulation studies. Oecologia (Berlin) 72:46–51.

    Article  Google Scholar 

  • Schierwater, B., Ender, A., Schwenk, K., Spaak, P. and Streit, B. (1994) The evolutionary ecology of Daphnia. In: B. Schierwater, B. Streit, G.P. Wagner and R. DeSalle (eds): Molecular Ecology and Evolution: Approaches and Applications. Birkhauser Verlag, Basel, pp 495–508.

    Google Scholar 

  • Schwenk, K. and Spaak, P. (1995) Evolutionary and ecological consequences of interspecific hybridization in cladocerans. Experientia 51:465–481.

    Article  CAS  Google Scholar 

  • Sculthorpe, C.D. (1967) The Biology of Aquatic Vascular Plants. Edward Arnold, London.

    Google Scholar 

  • Siddall, M.E., Martin, D.S., Bridge, D., Desser, S.S. and Cone, D.K. (1995) The demise of a phylum of protists: Phylogeny of myxozoan and other parasitic Cnidaria. J. Parasitol. 81:961–987.

    Article  PubMed  CAS  Google Scholar 

  • Silander, J.A. Jr. (1985) Microevolution in clonal plants. In: J.B.C. Jackson, L.W. Buss and R.E. Cook (eds): Population Biology and Evolution of Clonal Organisms. Yale University Press, New Haven, Connecticut, pp 107–152.

    Google Scholar 

  • Smothers, J.F., Von Dohlen, C.D., Smith, L.H., Jr. and Spall, R.D. (1994) Molecular evidence that the myxozoan protists are metazoans. Science 265:1719–1721.

    Article  PubMed  CAS  Google Scholar 

  • Stearns, S.C. (1987) Why sex evolved and the differences it makes.In.: S.C. Stearns (ed.): The Evolution of Sex and its Consequences. Birkhauser Verlag, Basel, pp 15–31.

    Google Scholar 

  • Stewart, C.N. Jr. and Excoffier, L. (1996) Assessing population genetic structure and variability with RAPD data: Application to Vaccinium macrocarpon (American Cranberry). J. Evol. Biol. 9:153–171.

    Article  CAS  Google Scholar 

  • Titus, J.E. and Hoover, D.T. (1991) Toward predicting reproductive success in submersed freshwater angiosperms. Aquat. Bot. 41:111–136.

    Article  Google Scholar 

  • Tooby, J. (1982) Pathogens, polymorphism, and the evolution of sex. J. Theor. Biol. 97: 557–576.

    Article  PubMed  CAS  Google Scholar 

  • Toriumi, M. (1974) Analysis of interspecific variation in Lophopodella carteri (Hyatt) from the taxonomical viewpoint. XXII. General considerations. Bull. Mar. Biol. Stn Asamushi 15:1–12.

    Google Scholar 

  • Uotila, L. and Jokela, J. (1995) Variation in reproductive characteristics of colonies of the freshwater bryozoan Cristatella mucedo. Freshw. Biol. 34:513–522.

    Article  Google Scholar 

  • Vernon, J.G., Okamura, B., Jones, C.S. and Noble, L.R. (1996) Temporal patterns of clonality and parasitism in a population of freshwater bryozoans. Proc. R. Soc. Lond. B 263: 1313–1318.

    Article  CAS  Google Scholar 

  • Weider, L.J. (1989) Spatial heterogeneity and clonal structure in Arctic populations of apomic-tic Daphnia. Ecology 70:1405–1413.

    Article  Google Scholar 

  • Weider, L.J. (1993) Niche breadth and life history variation in a hybrid Daphnia complex. Ecology 74:935–943.

    Article  Google Scholar 

  • Welsh, J. and McClelland, M. (1990) Fingerprinting genomes using PCR with arbitrary primers. Nucl. Acids Res. 18:7213–7218.

    Article  PubMed  CAS  Google Scholar 

  • Wesenberg-Lund, C. (1907) On the occurrence of Fredericella sultana Blumenbach and Paludi-cella ehrenbergi von Bened. in Greenland. Med. Gronl. 34:63–75.

    Google Scholar 

  • Williams, J.G.K., Kubelik, A.R., Livak, K.J., Rafolski, J.A. and Tingey, S.V (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucl. Acids Res. 18:6531–6535.

    Article  PubMed  CAS  Google Scholar 

  • Woss, E.R. (1994) Seasonal fluctuations of bryozoan populations in five water bodies with special emphasis on the life cycle of Plumatella fungosa (Pallas). In: P.J. Hayward, J.S. Ryland and P.D. Taylor (eds): Biology and Paleobiology of Bryozoans. Olsen and Olsen, Fredensborg, Denmark, pp 211–214.

    Google Scholar 

  • Wolf, K. and Markiw, M.E. (1984) Biology contravenes taxonomy in the Myxozoa: New discoveries show alternation of invertebrate and vertebrate hosts. Science 225:1449–1452.

    Article  PubMed  CAS  Google Scholar 

  • Wood, T.S. (1973) Colony development in species of Plumatella and Fredericella (Ectoprocta: Phylactolaemata). In: R.S. Boardman, A.H. Cheetham and W.A. Oliver, Jr. (eds): Development and Function of Animal Colonies through Time. Dowden, Hutchinson and Ross, Stroudsberg, Pennsylvania, pp 395–432.

    Google Scholar 

  • Wood, T.S. (1989) Ectoproct bryozoans of Ohio. Bulletin of the Ohio Biological Survey New Series, Vol. 8, No. 2. The Ohio State University, Columbus, Ohio.

    Google Scholar 

  • Wood, T.S. (1991) Bryozoans. In: J.H. Thorp and A.P. Covich (eds): Ecology and Classification of North American Freshwater Invertebrates. Academic Press, San Diego, pp 481–499.

    Google Scholar 

  • Yokoyama, H., Ogawa, K. and Wakabayashi, H. (1993) Involvement of Branchiura sowerbyi (Oligochaeta: Annelida) in the transmission of Hoferellus carassii (Myxosporea: Myxozoa), the causative agent of kidney enlargement disease (KED) of goldfish Carassius auratus. Gyobyo Kenkyu 28:135–139.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Basel AG

About this chapter

Cite this chapter

Okamura, B. (1997). Genetic similarity, parasitism, and metapopulation structure in a freshwater bryozoan. In: Streit, B., Städler, T., Lively, C.M. (eds) Evolutionary Ecology of Freshwater Animals. EXS, vol 82. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8880-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8880-6_11

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9812-6

  • Online ISBN: 978-3-0348-8880-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics