Skip to main content

Chemo- and mechanosensory orientation by crustaceans in laminar and turbulent flows: From odor trails to vortex streets

  • Chapter
Orientation and Communication in Arthropods

Part of the book series: EXS ((EXS,volume 84))

Summary

Crustaceans use odor and fluid mechanical cues to extract information from their environment. These cues enable animals to find resources, orient to water currents, or escape predators. Because the properties of the fluid environment affect the transmission and structure of relevant signals, a better understanding of sensory and behavioral mechanisms will be aided by considering, at the same time, the hydrodynamic context of chemo- and mechanosensory behaviors. Crustaceans occupy aquatic habitats where flows range from almost completely laminar to nearly fully turbulent. The considerable scope of hydrodynamic properties is mirrored by equally extreme variations in the complexity of the signals entrained in these flows. Ambient noise and stochastic variation increase in increasingly energetic, turbulent conditions. The sensory and behavioral mechanisms of animals that orient in turbulent environments suggest that they have, in the course of evolution, been shaped by the flow properties. Here, sensory systems are geared to extract rapidly fluctuating signals against a noisy background. They sometimes have elaborate noise filtering mechanisms that enable the detection of rather coarse types of signal features to improve the signal-to-noise ratio. In contrast, the simpler and more predictable structure of signals carried in laminar flows may allow more accurate orientation and discrimination to occur, and free animals from the burden of supporting complex noise-filtering circuitry. Future comparative investigations of sensory physiology and behavior of animals in relation to their flow environment promise to increase our understanding of orientation by means of chemo- and mechanoperception.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allanson, B.R., Skinner, D. and Imberger, J. (1992) Flow in prawn burrows. Est. Coastal Shelf Sei. 35:253–268.

    Google Scholar 

  • Andrews, J.C. (1983) Deformation of the active space in the low Reynolds number feeding current of calanoid copepods. Can. J. Fish. Aquat. Sci. 40:1193–1302.

    Google Scholar 

  • Arbas, E.A., Willis, M.A. and Kanzaki, R. (1993) Organization of goal oriented locomotion:pheromone modulated flight behavior of moths. In: R.D. Beer, R.E. Ritzmann and T. McKenna (eds):Biological Neural Networks in Invertebrate Neuroethology and Robotics. Academic, New York, pp 159–198.

    Google Scholar 

  • Atema, J. (1988) Distribution of chemical stimuli. In: J. Atema, R.R. Fay, A.N. Popper, and W.N. Tavolga (eds):Sensory Biology of Aquatic Animals. Springer-Verlag, New York, pp 29–56.

    Google Scholar 

  • Atema, J. (1996) Eddy chemotaxis and odor landscapes:exploration of nature with animal sensors. Biol. Bull. 191:129–138.

    Google Scholar 

  • Ball, E.E. and Cowan, N. (1977) Ultrastructure of the antennal sensilla of Acetes (Crustacea, Decapoda, Natantia, Sergestidae). Phil. Trans. R. Soc. Lond. B 277:429–456.

    CAS  Google Scholar 

  • Bamber, S.D. and Naylor, E. (1996) Mating behaviour of male Carcinus maenus in relation to a putative sex pheromone:behavioural changes in response to antennule restriction. Mar. Biol. 125:483–488.

    Google Scholar 

  • Basil, J. and Atema, J. (1994) Lobster orientation in turbulent odor plumes:Simultaneous measurements of tracking behavior and temporal odor patterns. Biol. Bull. 187:272–273.

    PubMed  CAS  Google Scholar 

  • Bleckmann, H., Breithaupt, T., Blickhan, R. and Tautz, J. (1991) The time course and frequency content of hydrodynamic events caused by moving fish, frogs and crustaceans. J. Comp. Physiol. A 168:749–757.

    CAS  Google Scholar 

  • Blickhan, R., Krick, C., Zehren, D., Nachtigall, W. and Breithaupt, T. (1992) Generation of a vortex chain in the wake of a subundulatory swimmer. Naturwissens. 79:220–221.

    Google Scholar 

  • Borroni, P.F. and Atema, J. (1988) Adaptation in chemoreceptor cells I. Self-adapting backgrounds determine thresholds and cause parallel shift of dose-response function. J. Comp. Physiol. A 164:67–74.

    PubMed  CAS  Google Scholar 

  • Breithaupt, T. and Ayers, J. (1996) Visualization and quantitative analysis of biological flow fields using suspended particles. In: P. H. Lenz, D.K. Hartline, J.E. Purcell and D.L. Mac-millan (eds) Zooplankton:Sensory Ecology and Physiology. Gordon Breach Publishers, Amsterdam, pp 117–129.

    Google Scholar 

  • Breithaupt, T. and Tautz, J. (1990) The sensitivity of crayfish mechanoreceptors to hydrodynamic and acoustic stimuli. In: K. Wiese, W.-D. Krenz, J. Tautz, J. Riechert, and B. Mulloney (eds):Frontiers in Crustacean Neurobiology. Birkhäuser Verlag, Basel, pp 114–120.

    Google Scholar 

  • Breithaupt, T., Schmitz, B. and Tautz, J. (1995) Hydrodynamic orientation in crayfish (Procam-barus clarkii) to swimming fish prey. J. Comp. Physiol. A 177:481–491.

    CAS  Google Scholar 

  • Carr, W.E.S. (1988) The molecular nature of chemical stimuli in the aquatic environment. In: J. Atema, R.R. Fay, A.N. Popper, and W.N. Tavolga (eds):Sensory Biology of Aquatic Animals. Springer-Verlag, New York, pp 3–27.

    Google Scholar 

  • Crouau, Y. (1996) Association in a crustacean sensory organ of two usually exclusive mechano-sensory cell. Biol. Cell. 85:191–195.

    Google Scholar 

  • Denny, M.W. (1988) Biology and mechanics of the wave-swept environment. Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Derby, C.D. and Atema, J. (1982) The function of chemo-and mechanoreceptors in lobster (Homarus americanus) feeding behavior. J. Exp. Biol. 98:317–327.

    Google Scholar 

  • Devine, D.V and Atema, J. (1982) Function of chemoreceptor organs in spatial orientation of the lobster, Homarus americanus: differences and overlap. Biol. Bull. 163:144–153.

    Google Scholar 

  • Dittmer, K., Grasso, F. and Atema, J. (1995) Effects of varying plume turbulence on temporal concentration signals available to orienting lobsters. Biol. Bull. 189:232–233.

    Google Scholar 

  • Ebina, Y. and Wiese, K. (1984) A comparison of neuronal and behavioural thresholds in the displacement sensitive pathway of the crayfish Procambarus. J. Exp. Biol. 107:45–55.

    Google Scholar 

  • Elofsson, R. (1971) The ultrastructure of a chemoreceptor organ in the head of copepod crustaceans. Acta. Zool. 52:299–315.

    Google Scholar 

  • Fields, D.M., and Yen, J. (1996) The escape response of Pleuromamma xiphias in response to a quantifiable fluid mechanical disturbance. Mar. Fresh. Behav. Physiol. 25:323–339.

    Google Scholar 

  • Gill, C.W. and Poulet, S.A. (1988) Responses of copepods to dissolved free amino acids. Mar. Ecol. Prog. Ser. 43:269–276.

    CAS  Google Scholar 

  • Gleeson, R.A. (1982) Morphological and behavioral identification of the sensory structures mediating pheromone reception in the blue crab, Callinectes sapidus. Biol. Bull. 163:162–171.

    Google Scholar 

  • Gomez, G. and Atema, J. (1996a) Temporal resolution in olfaction I:Stimulus integration time of lobster chemoreceptor cells. J. Exp. Biol. 199:1771–1779.

    PubMed  Google Scholar 

  • Gomez, G. and Atema, J. (1996b) Temporal resolution in olfaction II:Time course of recovery from adaptation in lobster chemoreceptor cells. J. Neurophysiol. 76:1340–1343.

    PubMed  CAS  Google Scholar 

  • Gomez, G., Voigt, R. and Atema, J. (1994) Frequency filter properties of lobster chemoreceptor cells determined with high resolution stimulus measurement. J. Comp. Physiol. A 174:803–811.

    Google Scholar 

  • Gross, T.F. and Nowell, A.R.M. (1983) Mean flow and turbulence scaling in a tidal boundary layer. Cont. Shelf Res. 2:109–126.

    Google Scholar 

  • Hamner, P. and Hamner, W.M. (1977) Chemosensory tracking of scent trails by the planktonic shrimp Acetes sibogae australis. Science 195:886–888.

    PubMed  CAS  Google Scholar 

  • Hamner, W.M., Hamner, P., Strand, S.W. and Gilmer, R.W. (1983) Behavior of Antarctic krill, Euphausia superba: chemoreception, feeding, schooling and molting. Science 220:433–435.

    PubMed  CAS  Google Scholar 

  • Hart, D.D., Clark, B.D. and Jasentuliyana, A. (1996) Fine-scale field measurement of benthic flow environments inhabited by stream invertebrates. Limnol. Oceanog. 41:297–308.

    Google Scholar 

  • Haury, L.R., Kenyon, D.E. and Brooks, J.R. (1980) Experimental evaluation of the avoidance reaction of Calanus ftnmarchicus. J. Plankt. Res. 2:187–203.

    Google Scholar 

  • Hayama, T. and Caprio, J.C. (1989) Lobule structure and somatotopic organization of the medullary facial lobe in the channel catfish Ictaluruspunctatus. J. Comp. Neurol. 285:9–17.

    PubMed  CAS  Google Scholar 

  • Herrnkind, W.F. and McLean, R. (1971) Field studies of homing, mass emigration and orientation in the spiny lobster, Panulirus argus. Ann. N. Y. Acad. Sci. 188:359–377.

    PubMed  CAS  Google Scholar 

  • Humphrey, J.A.C., Devarakonda, R., Iglesias, I. and Barth, F.G. (1993) Dynamics of arthropod hairs. I. Mathematical modeling of the hair and air motions. Phil. Trans. R. Soc. Land. B 340:423–444.

    Google Scholar 

  • Ingram, C.L. and Hessler, R.R. (1983) Distribution and behavior of scavenging amphipods from the central North Pacific. Deep Sea Res. 25:683–705.

    Google Scholar 

  • Johnson, B.R., Voigt, R., Borroni, P.F. and Atema, J. (1984) Response properties of lobster chemoreceptors:tuning of primary taste neurons in the walking legs. J. Comp. Phys. 155:593–604.

    CAS  Google Scholar 

  • Killian, K.A. and Page, C.H. (1992) Mechanosensory afferents innervating the swimmerets of the lobster II. Afferents activated by hair deflection. J. Comp. Physiol. A 170:501–508.

    CAS  Google Scholar 

  • Kirk, K.L. (1985) Water flows produced by Daphnia and Diaptomus: Implications for prey selection by mechansensory predators. Limnol. and Oceanogr. 30:670–686.

    Google Scholar 

  • Koehl, M.A.R. and Strickler, J.R. (1981) Copepod feeding currents:food capture at low Reynolds number. Limnol. Oceanogr. 26:1062–1073.

    Google Scholar 

  • Konishi, M. (1986) Centrally synthesized maps of sensory space. TINS 9:163–168.

    Google Scholar 

  • Kouyama, N. and Shimozawa, T. (1982) The structure of a hair mechanoreceptor on the antennule of the crayfish (Crustacea). Cell Tiss. Res. 266:565–578.

    Google Scholar 

  • Laverack, M. (1962a) Responses of cuticular sense organs of the lobster, Homarus vulgaris (Crustacea). I. Hair-peg organs as water current receptors. Comp. Biochem. Physiol. 5:319–335.

    Google Scholar 

  • Laverack, M. (1962b) Responses of cuticular sense organs of the lobster, Homarus vulgaris (Crustacea). II. Hair-fan organs as pressure receptors. Comp. Biochem. Physiol. 6:137–145.

    Google Scholar 

  • List, E.J. (1982) Turbulent jets and plumes. Ann. Rev. Fluid Mech. 14:189–212.

    Google Scholar 

  • Lenz, P. and Yen, J. (1993) Distal setal mechanoreceptors of the first antennae of marine copepods. Bull. Mar. Sci. 53:170–179.

    Google Scholar 

  • McLeese, D.W. (1973) Orientation of lobsters (Homarus americanus) to odor. J. Fish Res. Board Can. 30:838–840.

    Google Scholar 

  • Mellon, DeF., Jr. (1963) Electrical responses from dually innervated tactile receptors on the thorax of the crayfish. J. Exp. Biol. 40:137–148.

    Google Scholar 

  • Monismith, S.G., Koseff, J.R., Tompson, J.K., O’Riordan, C.A. and Nepf, H.M. (1990) A study of model bivalve siphonal currents. Limnol. and Oceanogr. 35:680–696.

    Google Scholar 

  • Moore, P.A. (1994) A model of the role of adaptation and disadaptation in olfactory receptor neurons:implications for the coding of temporal and intensity patterns in odor signals. Chem. Senses 19:71–86.

    PubMed  CAS  Google Scholar 

  • Moore, P.A. and Atema, J. (1991) Spatial information in the three-dimensional fine structure of an aquatic odor plume. Biol. Bull. 181:408–418.

    Google Scholar 

  • Moore, P.A., Atema, J. and Gerhardt, G.A. (1991a) Fluid dynamics and microscale chemical movement in the chemosensory appendages of the lobster Homarus americanus. Chem. Senses 16:663–674.

    CAS  Google Scholar 

  • Moore, P.A., Scholz, N. and Atema, J. (1991b) Chemical orientation of lobsters, Homarus americanus in turbulent odor plumes. J. Chem.Ecol. 17:1293–1307.

    Google Scholar 

  • Moore, P.A., Zimmer-Faust, R.K., BeMent, S.L., Weissburg, M.J., Parrish, J.M. and Gerhardt, G. A. (1992) Measurement of microscale patches in a turbulent aquatic odor plume using a semi-conductor based microprobe. Biol. Bull. 183:138–142.

    Google Scholar 

  • Moore, P.A., Fields, D.M. and Yen, J. (1994a) The fine structure of chemical signals within the feeding current of calanoid copepods. Eos 75:163.

    Google Scholar 

  • Moore, P.A., Weissburg, M.J., Parrish, J.M., Zimmer-Faust, R.K. and Gerhardt, G.A. (1994b) Spatial distribution of odors in simulated benthic boundary layer flows. J. Chem. Ecol. 20:255–279.

    CAS  Google Scholar 

  • Murlis, J., Elkinton, J.S. and CardĂ©, R.T. (1992) Odor plumes and how insects use them. Ann. Rev. Entomol. 37:505–532.

    Google Scholar 

  • Nevitt, G.A., Pentcheff, N.D., Lohmann, K.J. and Zimmer-Faust, R.K. (1995) Evidence for hydrodynamic orientation by spiny lobsters in a patch reef environment. J. Exp. Biol. 198:2049–2054.

    PubMed  Google Scholar 

  • Paffenhöfer, G.-A. and Knowles, S.C. (1978) Feeding of marine planktonic copepods on mixed phytoplankton. Mar. Biol. 48:143–152.

    Google Scholar 

  • Palmer, M. A. (1988) Dispersal of marine meiofauna:a review and conceptual model explaining passive transport and active emergence with implications for recruitment. Mar. Ecol. Pro. Ser. 48:81–91.

    Google Scholar 

  • Palmer, M.A. and Gust, G. (1985) Dispersal of meiofauna in a turbulent tidal creek. J. Mar. Res. 43:179–210.

    Google Scholar 

  • Plummer, M.R., Tautz, J. and Wine, J.J. (1986) Frequency coding of waterborne vibrations by abdominal mechanosensory interneurons in Procambarus clarkii. J. Comp. Phvsiol. A 158:751–764.

    CAS  Google Scholar 

  • Poulet, S.A. and Ouellet, G. (1982) The role of amino acids in the chemosensory swarming and feeding of marine copepods. J. Plankt. Res. 4:341–361.

    CAS  Google Scholar 

  • Poulet, S.A., Williams, R., Conway, D.VP. and Videau, C. (1991) Co-occurrence of copepods and dissolved free amino acids in shelf sea waters. Mar. Biol. 10:373–385.

    Google Scholar 

  • Price, H.J. (1989) Swimming behavior of krill in response to algal patches:a mesocosm study. Limnol. Oceanogr. 34:649–659.

    Google Scholar 

  • Reeder, P.B. and Ache, B.W. (1980) Chemotaxis in the Florida spiny lobster, Panulirus argus. Anim. Behav. 28:831–839.

    Google Scholar 

  • Schlichting, H. (1979) Boundary layer theory. McGraw-Hill, New York, NY.

    Google Scholar 

  • Schmitz, B. (1992) Directionality of antennal sweeps elicited by water jet stimulation of the tailfan in the crayfish Procambarus clarkii. J. Comp. Physiol. A 171:617–627.

    Google Scholar 

  • Strickler, J.R. (1985) Feeding currents in calanoid copepods:two new hypotheses. In: M.S. Laverack (ed.):Physiological Adaptations of Marine Animals. Symposium of Society for Experimental Biology 39:459–485.

    Google Scholar 

  • Strickler, J.R. and Bal, A.K. (1973) Setae of the first antennae of the copepod Cyclops scutifer (Sars):their structure and importance. Proc. Natl. Acad. Sei. 70:2656–2659.

    CAS  Google Scholar 

  • Sigvardt, K.A., Hagiwara, G. and Wine, J.J. (1982) Mechanosensory integration in the crayfish abdominal nervous system:Structural and physiological differences between interneurons with single and multiple spike initiating sites. J. Comp. Physiol. A 148:143–157.

    Google Scholar 

  • Solon, M. and Kass-Simon, G. (1981) Mechanosensory activity of hair organs on the chelae of Homarus americanus. J. Comp. Physiol. A 6:217–223.

    Google Scholar 

  • Speeding, G.R. (1987) The wake of a kestrel (Falco tinnunculus) in flapping flight. J. Exp. Biol. 127:59–87.

    Google Scholar 

  • Takahata, M. and Hisada, M. (1982) Statocyst interneurons in the crayfish Procambarus clarkii (Girard). II. Directional sensitivity and its mechanism. J. Comp. Physiol. 149:301–306.

    Google Scholar 

  • Tautz, J. (1987) Water vibration elicits acitive antennal movements in the crayfish, Oronectes limosus. Anim. Behav. 35:748–754.

    Google Scholar 

  • Tautz, J. and Plummer, M. (1994) Comparison of directional selectivity in identified spiking and non-spiking mechanosensory neurons in the crayfish Oronectes limosus. Proc. Natl. Acad. Sci. USA 91:5853–5857.

    PubMed  CAS  Google Scholar 

  • Tautz, J. and Sandeman, D.C. (1980) The detection of waterborne vibrations by the sensory hairs on the chelae of the crayfish. J. Exp. Biol. 88:351–356.

    Google Scholar 

  • Tautz, J., Masters, W.M., Eicher, B. and Markl, H. (1981) A new type of water vibration receptor on the crayfish antennae. I. Sensory physiology. J. Comp. Physiol. 144:533–541.

    Google Scholar 

  • Taylor, R.C. (1968) Water-vibration reception:A neurophysiological study in unrestrained crayfish. Comp. Biochem. Physiol. 27:795–805.

    Google Scholar 

  • Tazaki, K. (1977) Nervous responses from mechanosensory hairs on the antennal flagellum in the lobster, Homarus gammarus (L.). Mar. Behav. Physiol. 5:1–18.

    Google Scholar 

  • Tazaki, K. and Ohnishi, M. (1974) Responses from tactile receptors in the antenna of the spiny lobster Panulirus japonicus. Comp. Biochem. Physiol. 47A:1323–1327.

    Google Scholar 

  • Tennekes, H. and Lumley, J.L. (1972) A first course in turbulence. MIT Press, Cambridge, MA.

    Google Scholar 

  • Thurston, M.H. (1979) Scavenging abyssal amphipods from the North-East Atlantic Ocean. Mar. Biol. 51:55–68.

    Google Scholar 

  • Van Leeuwen, H.C. and Maly, E.J. (1991) Changes in the swimming of male Diaptomus lep-topus (Copepoda:Calanoida) in response to gravid females. Limol. Oceanogr. 36:1188–1195.

    Google Scholar 

  • Vogel, S. (1994) Life in moving fluids, 2nd ed. Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Voigt, R. and Atema, J. (1990) Adaptation in chemoreceptor cells. III. Effects of cumulative adaptation. J. Comp. Physiol. A 166:865–874.

    Google Scholar 

  • Voigt, R. and Atema, J. (1992) Tuning of chemoreceptor cells of the second antennae of the American lobster (Homarus americanus) with a comparison of four of its other chemoreceptor organs. J. Comp. Physiol. A 171:673–683.

    Google Scholar 

  • Weatherby, T.M., Wong, K.K. and Lenz, P.H. (1994) Fine structure of the distal sensory setae on the first antennae of Pleuromamma xiphias Giesbrecht (Copepoda). J. Crust. Biol. 14:670–685.

    Google Scholar 

  • Weissburg, M.J. and Derby, CD. (1995) Regulation of sex-specific feeding behavior in fiddler crabs:Physiological properties of chemoreceptor neurons in claws and legs of males and females. J. Comp. Physiol. A 176:513–526.

    CAS  Google Scholar 

  • Weissburg, M.J. and Zimmer-Faust, R.K. (1991) Ontogeny versus phytogeny in determining patterns of chemoreception:Initial studies with fiddler crabs. Biol. Bull. 181:205–215.

    CAS  Google Scholar 

  • Weissburg, M.J. and Zimmer-Faust, R.K. (1993) Life and death in moving fluids:Hydro-dynamic effects on chemosensory-mediated prĂ©dation. Ecol. 74:1428–1443.

    Google Scholar 

  • Weissburg, M.J. and Zimmer-Faust, R.K. (1994) Odor plumes and how blue crabs use them to find prey. J. Exp. Biol. 197:349–375.

    PubMed  CAS  Google Scholar 

  • Wiese, K. (1976) Mechanoreceptors for near-field water displacement in crayfish. J. Neuro-physiol. 39:816–833.

    CAS  Google Scholar 

  • Wiese, K. (1988) The representation of hydrodynamic parameters in the CNS of the crayfish Procambarus. In: J. Atema, R.R. Fay, A.N. Popper, and WN. Tavolga (eds):Sensory Biology of Aquatic Animals. Springer-Verlag, New York, pp 665–686.

    Google Scholar 

  • Wiese, K. and Marschall, H.P. (1990). Sensitivity to vibration and turbulence of water in the context of schooling in Antarctic krill Euphasia superba. In: K. Wiese, W.-D. Krenz, J. Tautz, H. Riechert and B. Mulloney (eds):Frontiers in Crustacean Neurobiology. Birkhäuser Verlag, Basel, pp 121–130.

    Google Scholar 

  • Wiese, K. and Schultz, R. (1982) Intrasegmental inhibition of the displacement sensitive pathway in the crayfish (Procambarus clarkii). J. Comp. Physiol. A 147:447–454.

    Google Scholar 

  • Wilkens, L.A. and Larimer, J.L. (1972) The CNS photoreceptor fo crayfish:morphology and synaptic activity. J. Comp. Physiol. 80:389–407.

    Google Scholar 

  • Williamson, C.E. and Vanderploeg, H.A. (1988) Predatory suspension-feeding in Diaptomus: prey defenses and the avoidance of cannibalism. Bull. Mar. Sci. 43:561–572.

    Google Scholar 

  • Yen, J. and Fields, D.M. (1992) Escape responses of Acartia hudsonica (Copepoda) nauplii from the flow field of Temora longicornis (Copepoda). Arch. Hydrobiol. Beih. 36:123–134.

    Google Scholar 

  • Yen, J. and Fields, D.M. (1994) Behavioral responses of Eucheata rimana to controlled fluid mechanical stimuli. EOS, Trans, Am. Geophys. Union 75:184.

    Google Scholar 

  • Yen, J. and Strickler, J.R. (1996) Advertisement and concealment in the plankton:what makes a copepod hydrodynamically conspicuous. Invert. Biol. 115:191–205.

    Google Scholar 

  • Yen, J., Lenz, PH., Gassie, D.V and Hartline, D.K. (1992) Mechanoreception in marine copepods:electrophysiological studies on the first antennae. J. Plankt. Res. 14:495–512.

    Google Scholar 

  • Yen, J., Colin, S., Doall, M. and Strickler, J.R. (1996) Mate tracking in copepods:pheromones or species specific wakes? EOS. Trans. Am. Geophys. Union. 77:425–426.

    Google Scholar 

  • Yen, J., Sanderson, B., Strickler, J.R. and Okubo, A. (1991) Feeding currents and energy dissipation by Euchaeta rimana, a subtropical pelagic copepod. Limol. Oceanogr. 36:362–369.

    Google Scholar 

  • Zimmer-Faust, R.K., Finelli, CM., Pentcheff, N.D. and Wethey, D.S. (1995) Odor plumes and animal navigation in turbulent flow:A field study. Biol. Bull. 188:111–116.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Basel AG

About this chapter

Cite this chapter

Weissburg, M.J. (1997). Chemo- and mechanosensory orientation by crustaceans in laminar and turbulent flows: From odor trails to vortex streets. In: Lehrer, M. (eds) Orientation and Communication in Arthropods. EXS, vol 84. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8878-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8878-3_8

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9811-9

  • Online ISBN: 978-3-0348-8878-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics