Skip to main content

The application of high-throughput screening to novel lead discovery

  • Chapter
Progress in Drug Research

Part of the book series: Progress in Drug Research ((PDR,volume 51))

Summary

The ability to discover new lead compounds for novel therapeutic targets is a pivotal step in drug discovery programmes. High-throughput screening (HTS) utilises a number of platforms for the rapid screening of novel targets to accelerate this process. Key issues in HTS include assay configuration and the ability of a high-throughput screen to predict drug-target interactions accurately. This review highlights a number of issues in the HTS process and describes three key target areas that are likely to be sources of novel, therapeutically important drugs. Particular emphasis is placed on the mechanistic basis of drug-target interactions that are of prime importance in the design of HTS approaches. Critical aspects of information management related to HTS are summarised.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

HTS:

high-throughput screening

SPA:

scintillation proximity assay

HTRF:

homogeneous timeresolved fluorescence

ELISA:

enzyme-linked immunoabsorbtion assay

GFP:

green fluorescent protein

RTK:

receptor tyrosine kinases

GPCR:

G-protein-coupled receptor

EGRF:

epidermal growth factor receptor

FRET:

fluorescence resonance energy transfer

CRE:

cyclic-AMP response element

References

  1. Banks, M., Binnie, A. and Fogarty, S.: J. Biomol. Screening 2, 133–135 (1997).

    Article  Google Scholar 

  2. Mellor, G.W., Fogarty, S., O’Brian, S., Congreve, M., Banks, M.N., Mills, K.M., Jeffries, B. and Houston, J.G.: J. Biomol. Screening 2, 153–158 (1997).

    Article  CAS  Google Scholar 

  3. McCaffrey C., Powers G., Talbot M.K.: J. Biomolec. Screening 1, 187–190 (1996).

    Article  CAS  Google Scholar 

  4. Fogarty, S.J., Mellor, G.W., Bank, M.N., Mills, K.M., O’Brien, M.S., Jefferies, B. and Houston, J.G.: Proximity News, issue 29 (1996).

    Google Scholar 

  5. Lemmo T., Rose D. and Tisone T.: Society for Biomolecular Screening, 3rd Annual Conference, 1997.

    Google Scholar 

  6. Cook, N.O.: Drug Discovery Today 7, 287–294 (1996).

    Article  Google Scholar 

  7. Chen, W., Shields, T.S., Stork, PJ. and Cone, R.D.: Anal. Biochem. 226, 349–354 (1995).

    Article  PubMed  CAS  Google Scholar 

  8. Messier, T.L., Dorman, M., Brauner-Osbourne, H., Eubanks, D. and Brann, M.R.: Pharmacol. Toxicol. 76, 308–311 (1995).

    Article  PubMed  CAS  Google Scholar 

  9. Stratowa, C., Machat, H., Burger, E., Himmler, A., Schafer, R., Spevak., W., Weyer, U., Wiche-Castanon, M. and Czernilofsky, A.P.: J. Recep. Sig. Trans. Res. 15, 617–630 (1995).

    CAS  Google Scholar 

  10. Migeon, J.C. and Nathanson, N.M.: J. Biol. Chem. 269, 9767–9773 (1994).

    PubMed  CAS  Google Scholar 

  11. George, S.E., Bungay, P.J. and Naylor, L.H.: J. Biomolec. Screening 2, 235–240 (1997).

    Article  CAS  Google Scholar 

  12. Berger, J., Hauber, J., Hauber, R., Greiger, R. and Cullen, B.R.: Gene 66, 1–10 (1994).

    Article  Google Scholar 

  13. King, K., Dohlman, H.G., Thorner, J., Caron, M.G. and Lefkovitz, R.J.: Science 250, 120–123 (1990).

    Article  Google Scholar 

  14. Hemmila, I. and Webb, S.: Drug Disc. Today 2, 373–381 (1997).

    Article  CAS  Google Scholar 

  15. Kolb, A.J., Burke, J.W. and Mathis, G., in: J.P. Devlin (ed.): High throughput screening. Marcel Dekker Inc. 1997.

    Google Scholar 

  16. Dietrich, B. and Sauvage, J.P.: New J. Chem. 12, 8–9 (1988).

    Google Scholar 

  17. Mathis, G.: Clin. Chem. 39, 1953–1972 (1993).

    PubMed  CAS  Google Scholar 

  18. Milligan, G., Bond, R.A. and Lee, M.: Trend Pharmacol. Sci. 16, 10–13 (1995).

    Article  CAS  Google Scholar 

  19. Stables, J., Green, A., Marshall, R, Fraser, N., Knight, E., Sautel, M., Milligan, G., Lee, M. and Rees, S.: Analyt. Biochem. 252, 115–126 (1997).

    Article  PubMed  CAS  Google Scholar 

  20. Lerner, M.R.: Trends Neurosci. 17, 1420–2147 (1994).

    Article  Google Scholar 

  21. Alajoka, M.L., Baxter, G.T., Bemiss, W.R., Blau, D., Bousse, L.J., Chan, S.D.H., Dawes, T.D. and Hahnenberger, K.M., in: J.P. Devlin (ed.): High throughput screening. Marcel Dekker Inc. 1997.

    Google Scholar 

  22. Gilman, A.G.: Ann. Rev. Biochem. 56, 615 (1987).

    Article  PubMed  CAS  Google Scholar 

  23. Neer, E.: Cell 80, 249–257 (1995).

    Article  PubMed  CAS  Google Scholar 

  24. Clapham, D.E. and Neer, E.J.: Nature 365, 403–406 (1993).

    Article  PubMed  CAS  Google Scholar 

  25. Faure, M., Voyno-Yasenetskaya, A. and Bourne, H.R.: J. Biol. Chem. 269, 7851–7854 (1994).

    PubMed  CAS  Google Scholar 

  26. Duzic, E. and Lanier, S.M.: J. Biol. Chem. 267, 24045–24052 (1992).

    PubMed  CAS  Google Scholar 

  27. Eason, M.G., Kurose, H., Holt, B.D., Raymond, J.R. and Liggett, S.B.: J. Biol. Chem. 267, 15795–15804 (1992).

    PubMed  CAS  Google Scholar 

  28. Perez, D.M., Deyoung, M.B. and Graham, R.M.: Mol. Pharmacol. 44, 784–795 (1993).

    PubMed  CAS  Google Scholar 

  29. Adham, N., Tamm, J.A., Salon, J.A., Vaysee, P.J., Weinshank, R.L. and Branchek, T.: Neuropharmacology 33, 403–410 (1994).

    Article  PubMed  CAS  Google Scholar 

  30. Kenakin, T.: Physiol. Rev. 48, 413–463 (1996).

    CAS  Google Scholar 

  31. Cotecchia, S., Lattion, A.L., Diviani, D. and Cavalli, A.: Biochem. Soc. Trans. 23, 121–125 (1995).

    PubMed  CAS  Google Scholar 

  32. DeLean, A., Kilpatrich, B.F. and Caron, M.C.: Mol. Pharmacol. 22, 290–297 (1982).

    CAS  Google Scholar 

  33. Herz, J.M., Thomsen, W.J. and Yarbrough, G.G.: J. Recep. Sig. Trans. Res. 17, 671–776 (1997).

    CAS  Google Scholar 

  34. Heldin, C.H.: FEBS Lett. 410, 17–21 (1997).

    Article  PubMed  CAS  Google Scholar 

  35. Cohen, G.B., Ren, R. and Baltimore, D.: Cell 80, 237–248 (1995).

    Article  PubMed  CAS  Google Scholar 

  36. Heldin, C.H.: Cell 80, 213–223 (1995).

    Article  PubMed  CAS  Google Scholar 

  37. Yarden, Y. and Schlessinger, J.: Biochemistry 26, 1443–1451 (1987).

    Article  PubMed  CAS  Google Scholar 

  38. Herbert, S.C.: Am. J. Med. 104, 87–98 (1998).

    Article  Google Scholar 

  39. Catterall, W.A.: Curr. Opinion Cell Biol. 6, 607–615 (1994).

    Article  PubMed  CAS  Google Scholar 

  40. Sather, W.A. et al.: Curr Opinion Neurobiol. 4, 313–323 (1994).

    Article  CAS  Google Scholar 

  41. Armstrong, C.M. et al.: Neuron 20, 371–380 (1998).

    Article  PubMed  CAS  Google Scholar 

  42. Ashcroft, F.M. and Roper, J.: Curr. Opinion Cell Biol. 5, 677–683 (1993).

    Article  PubMed  CAS  Google Scholar 

  43. Jain, K.K.: Scrip Report, P.J. Publications Ltd. 1995.

    Google Scholar 

  44. Liu, Q.Y. et al.: Can. J. Physiol. 14, 275–280 (1998).

    CAS  Google Scholar 

  45. Bezanilla, F. and Stefani, E.: Biomolec. Structures 23, 819–846 (1994).

    Article  CAS  Google Scholar 

  46. Dolly, O.: Biochem. Soc. Trans. 23, 473–478 (1994).

    Google Scholar 

  47. Conley, E.C., in: The Ion Channel Facts Book. Vol 1. Extracellular ligand-gated channels. Academic Press, London 1995.

    Google Scholar 

  48. Conley, E.C., in: The Ion Channel Facts Book. Vol 2. Intracellular ligand-gated channels. Academic Press, London 1996.

    Google Scholar 

  49. Neher, E. and Sackmann, B.: Scientific American 266, 44–51 (1992).

    Article  PubMed  CAS  Google Scholar 

  50. Liem, L.K et al.: Neurosurgery 36, 292–382 (1995).

    Google Scholar 

  51. Epps, D.E.: Chem. Phys. Lipids 69, 137–150 (1994).

    Article  PubMed  CAS  Google Scholar 

  52. Houston, J. G. and Banks, M.V.: Current Opinion in Biotechnology 8, No 6, 734–740 (1997).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Basel AG

About this chapter

Cite this chapter

Kenny, B.A., Bushfield, M., Parry-Smith, D.J., Fogarty, S., Treherne, J.M. (1998). The application of high-throughput screening to novel lead discovery. In: Jucker, E. (eds) Progress in Drug Research. Progress in Drug Research, vol 51. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8845-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8845-5_7

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9798-3

  • Online ISBN: 978-3-0348-8845-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics