Skip to main content

Biomimicry as a basis for drug discovery

  • Chapter
Progress in Drug Research

Part of the book series: Progress in Drug Research ((PDR,volume 51))

Summary

Selected works are discussed which clearly demonstrate that mimicking various aspects of the process by which natural products evolved is becoming a powerful tool in contemporary drug discovery. Natural products are an established and rich source of drugs. The term “natural product” is often used synonymously with “secondary metabolite.” Knowledge of genetics and molecular evolution helps us understand how biosynthesis of many classes of secondary metabolites evolved. One proposed hypothesis is termed “inventive evolution.” It invokes duplication of genes, and mutation of the gene copies, among other genetic events. The modified duplicate genes, per se or in conjunction with other genetic events, may give rise to new enzymes, which, in turn, may generate new products, some of which may be selected for. Steps of the inventive evolution can be mimicked in several ways for purpose of drug discovery. For example, libraries of chemical compounds of any imaginable structure may be produced by combinatorial synthesis. Out of these libraries new active compounds can be selected. In another example, genetic system can be manipulated to produce modified natural products (“unnatural natural products”), from which new drugs can be selected. In some instances, similar natural products turn up in species that are not direct descendants of each other. This is presumably due to a horizontal gene transfer. The mechanism of this inter-species gene transfer can be mimicked in therapeutic gene delivery. Mimicking specifics or principles of chemical evolution including experimental and test-tube evolution also provides leads for new drug discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

6-dEB:

6-deoxyerythronolide B

PKS:

polyketide synthase

FAS:

fatty acid synthase

ACP:

acyl carrier protein

AT:

acyltransferase

KS:

ketosynthase

KR:

ketoreductase

DH:

dehydrase

ER:

enoylreductase

TE:

thioesterase

EDP:

electron pulse delivery

DMF:

dimethylformamide

PCR:

polymerase chain reaction

SELEX:

systematic evolution of ligands by exponential enrichment

References

  1. A. Burger, in: Burger’s Medicinal Chemistry, Fourth Ed., Part I. J. Wiley and Sons, New York, pp 1–54.

    Google Scholar 

  2. S. Omura (ed.): The Search for Bioactive Compounds from Microorganisms, Springer-Verlag, New York 1992.

    Google Scholar 

  3. R.P. Steiner (ed.): Folk Medicine, The Art and the Science, American Chemical Soc, Washington, D.C. 1986.

    Google Scholar 

  4. LJ. McGaw, A.K. Jäger and J. van Staden: Phytotherapy Res. 11, 113–117 (1997).

    Article  Google Scholar 

  5. M. Meckes, J. Torres, F. Calzada, J. Rivera, M. Camorlinga, H. Lemus and G. Rodriguez: Phytotherapy Res. 11, 128–131 (1997).

    Article  Google Scholar 

  6. G.R. Pettit, F.H. Pierson and C.L. Herald: Anticancer Drugs from Animals, Plants, and Microorganisms, J. Wiley & Sons, New York 1994.

    Google Scholar 

  7. M.-T. Huang, T. Osawa, C.-T. Ho and R.T. Rosen (eds.): Food Phytochemicals for Cancer Prevention I, Fruits and Vegetables, American Chemical Soc, Symposium Series 546, Washington, D.C. 1994.

    Google Scholar 

  8. R.V.M. Van Soest, T.M.G. Van Kempen and J.-C. Braekman (eds.): Sponges in Time and Space; Biology, Chemistry, Paleontology, A.A. Balkema Publ., Rotterdam 1994.

    Google Scholar 

  9. M.H.G. Munro, J.W. Blunt, RJ. Lake, M. Litaudon, C.N. Battershill and M. J. Page, in: R.V.M. Van Soest, T.M.G. Van Kempen and J.-C. Braekman (eds.): Sponges in Time and Space; Biology, Chemistry, Paleontology, A.A. Balkema Publ., Rotterdam 1994, pp. 473–484.

    Google Scholar 

  10. T. Hamada, T. Sugawara, S. Matsunaga and N. Fusetani, in: R.V.M. Van Soest, T.M.G. Van Kempen and J.-C. Braekman (eds.): Sponges in Time and Space; Biology, Chemistry, Paleontology, A.A. Balkema Publ., Rotterdam 1994, pp. 453–457.

    Google Scholar 

  11. F. J. Schmitz, in: R.V.M. Van Soest, T.M.G. Van Kempen and J.-C. Braekman (eds.): Sponges in Time and Space; Biology, Chemistry, Paleontology, A.A. Balkema Publ., Rotterdam 1994, pp. 485–496.

    Google Scholar 

  12. P. Juzlová, L. Martínková and V. Kren: J. Industrial Microbiol. 16, 163–170 (1996).

    Article  Google Scholar 

  13. J. Lederberg: The Scientist, March 17, 1997, p. 8.

    Google Scholar 

  14. J.W. Bennett and R. Bentley: Adv. Appl. Microbiol. 34, 1–28 (1989).

    Article  CAS  Google Scholar 

  15. M. Luckner: Secondary Metabolism in Microorganisms, Plants, and Animals, Third Ed., Springer-Verlag, New York 1990; a) p. 17; b) pp. 17-20; c) pp. 445-483; d) pp. 24-29.

    Google Scholar 

  16. K.A. Thomson, in: I.M. Chaiken and K.D. Janda (eds.): Molecular Diversity and Combinatorial Chemistry, American Chemical Soc., Washington, D.C. 1996, pp. 158–171.

    Google Scholar 

  17. D.A. Hopwood: Current Opinion in Biotechnology 4, 531–537 (1993).

    Article  PubMed  CAS  Google Scholar 

  18. R.A. Maplestone, MJ. Stone and D.H. Williams: Gene 115, 151–157 (1992).

    Article  PubMed  CAS  Google Scholar 

  19. J.W. Bennett: Can. J. Bot. 73(Suppl. 1), S917–S924 (1995).

    Article  CAS  Google Scholar 

  20. L.C. Vining: Gene 115, 135–140 (1992).

    Article  PubMed  CAS  Google Scholar 

  21. L.C. Vining: Annu. Rev. Microbiol. 44, 395–427 (1990).

    Article  PubMed  CAS  Google Scholar 

  22. L. C. Vining, in: D.J. Chadwick and J. Whelan (eds.): Secondary Metabolites: Their Function and Evolution, Ciba Foundation Symposium Series 171, J. Wiley, Chichester 1992, pp. 184–198.

    Google Scholar 

  23. R. Mazzarella and D. Schlessinger: Gene 205, 29–38 (1997).

    Article  PubMed  CAS  Google Scholar 

  24. S. Ohno: Evolution by Gene Duplication, Springer, New York 1970, p. 59.

    Google Scholar 

  25. M.J. Stone and D.H. Williams: Molecular Microbiology 6, 29–34 (1992).

    Article  PubMed  CAS  Google Scholar 

  26. D.J. Chadwick and J. Whelan (eds.): Secondary Metabolites: Their Function and Evolution, Ciba Foundation Symposium Series 171, J. Wiley, Chichester 1992; a) p. 271.

    Google Scholar 

  27. D.H. Williams and R.A. Maplestone, in: D.J. Chadwick and J. Whelan (eds.): Secondary Metabolites: Their Function and Evolution, Ciba Foundation Symposium Series 171, J. Wiley, Chichester 1992, pp. 45–63.

    Google Scholar 

  28. T. Cavalier-Smith, in: D.J. Chadwick and J. Whelan (eds.): Secondary Metabolites: Their Function and Evolution, Ciba Foundation Symposium Series 171, J. Wiley, Chichester 1992, pp. 64–87.

    Google Scholar 

  29. W.-H. Li and D. Graur: Fundamentals of Molecular Evolution, Sinauer Associates, Inc., Publ., Sunderland 1991; a) pp. 136-171; b) pp. 198-202.

    Google Scholar 

  30. B. Lewin: Genes V, Oxford Univ. Press, New York 1994; a) pp. 695-751; b) pp. 378-411, 413-455, 457-489.

    Google Scholar 

  31. A. Romberg and T.A. Baker: DNA Replication, Second Ed., W.H. Freeman and Co., New York 1992; a) pp. 836-837 and references cited therein; b) pp. 847-849.

    Google Scholar 

  32. J. Bailey: Genetics and Evolution, The Molecules of Inheritance, Oxford Univ. Press., New York 1995, pp. 96–97.

    Google Scholar 

  33. G. Bell: Selection, The Mechanism of Evolution, Chapman & Hall, Intern. Thomson Publ., New York 1997; a) p. 232; b) pp. 245-246; c) pp. 234-241; d) pp. 26-28.

    Google Scholar 

  34. E. Zuckerkandl: J. Mol. Evol. 44(Suppl. 1), S2–S8 (1997).

    Article  PubMed  CAS  Google Scholar 

  35. L. Demetrius: J. Mol. Evol. 45, 370–377 (1977).

    Article  Google Scholar 

  36. D.A. Hopwood: Chem. Rev. 97, 2465–2497 (1997).

    Article  PubMed  CAS  Google Scholar 

  37. D.C. Dennett: Darwin’s Dangerous Idea, Evolution and the Meaning of Life, A Touchstone Book, Simon & Schuster, Publ., New York 1996, pp. 48–60.

    Google Scholar 

  38. D.C. Dennett: The Sciences, May/June 1996, pp. 34-40.

    Google Scholar 

  39. N. Terrett: Tetrahedron News 6,1, 7 (1996).

    Google Scholar 

  40. S. Borman: Chemical & Engineering News, Feb. 24, 1997, pp. 43-62.

    Google Scholar 

  41. S.C. Stinson: Chemical & Engineering News, March 19, 1998, pp. 42, 44-46.

    Google Scholar 

  42. M.J. Plunkett and J.A. Ellman: Sci. Amer., April 1997, pp. 68-73.

    Google Scholar 

  43. S.R. Wilson and A.W. Czarnik (eds.): Combinatorial Chemistry, Synthesis and Application, J. Wiley & Sons, Inc., New York 1997.

    Google Scholar 

  44. I.M. Chaiken and K.D. Janda (eds.): Molecular Diversity and Combinatorial Chemistry, American Chemical Society, Washington, D.C. 1998.

    Google Scholar 

  45. Chem. Rev. 2 (1997), Thematic issue on Combinatorial Chemistry.

    Google Scholar 

  46. K.S. Lam, M. Lebl and V. Krchnák: Chem. Rev. 97, 411–448 (1997).

    Article  PubMed  CAS  Google Scholar 

  47. S.R. Wilson, in: S.R. Wilson and A.W. Czarnik (eds.): Combinatorial Chemistry, Synthesis and Application, J. Wiley & Sons, Inc., New York 1997, pp. 1–23.

    Google Scholar 

  48. D.J. Gravert and K.D. Janda: Chem. Rev. 97, 489–509 (1997).

    Article  PubMed  CAS  Google Scholar 

  49. E.A. Wintner and J. Rebek, Jr., in: S.R. Wilson and A.W. Czarnik (eds.): Combinatorial Chemistry, Synthesis and Application, J. Wiley & Sons, Inc., New York 1997, pp. 95–117.

    Google Scholar 

  50. A. Nefzi, J.M. Ostresh and R.A. Houghten: Chem. Rev. 97, 449–472 (1997).

    Article  PubMed  CAS  Google Scholar 

  51. G.P. Smith and V.A. Petrenko: Chem. Rev. 97, 391–410 (1997).

    Article  PubMed  CAS  Google Scholar 

  52. S.E. Osborne and A.D. Ellington: Chem. Rev. 97, 349–370 (1997).

    Article  PubMed  CAS  Google Scholar 

  53. M.C. Pirrung: Chem. Rev. 97, 473–488 (1977).

    Article  Google Scholar 

  54. S.H. DeWitt and A.W. Czarnik, in: S.R. Wilson and A.W. Czarnik (eds.): Combinatorial Chemistry, Synthesis and Application, J. Wiley & Sons, Inc., New York 1997, pp. 25–38.

    Google Scholar 

  55. M.R. Spiegel: Theory and Problems of Probability and Statistics, Schaum’s Outline Series, McGraw-Hill, Inc., New York 1992, pp. 9–11, 23-27.

    Google Scholar 

  56. M. Sternstein: Statistics, Barron’s Educational Series, Inc., Hauppauge, N.Y. 1996, pp. 43–49.

    Google Scholar 

  57. J.C. Roberts, B.E. Thomas, Y. Shen, A. Melikian-Badalian, P.J. Kowalczyk and P.V. Pallai, in: I.M. Chaiken and K.D. Janda (eds.): Molecular Diversity and Combinatorial Chemistry, American Chemical Society, Washington, D.C. 1998, pp. 10–15.

    Google Scholar 

  58. X.-Y. Xiao and M.P. Nova, in: S.R. Wilson and A.W. Czarnik (eds.): Combinatorial Chemistry, Synthesis and Application, J. Wiley & Sons, Inc., New York 1997, pp. 135–152.

    Google Scholar 

  59. D.G.I. Kingston, B.-N. Zhou, M.S. Abdel-Kader, J.M. Berger and S.-W Yang: Biodiversity Conservation and Drug Discovery. Exploration in Suriname’s Tropical Rainforest, 215th Natl. Meeting of Amer. Chem. Soc., Dallas, Texas, March 29–April 2, 1998, Abstract ORG-132.

    Google Scholar 

  60. M. Qabar, J. Urban, C. Sia, M. Klein and M. Kahn,in: I.M. Chaiken and K.D. Janda (eds.): Molecular Diversity and Combinatorial Chemistry, American Chemical Society, Washington, D.C. 1998, pp. 2–9.

    Google Scholar 

  61. M.A. Wuonola and D.G. Powers, in: I.M. Chaiken and K.D. Janda (eds.): Molecular Diversity and Combinatorial Chemistry, American Chemical Society, Washington, D.C. 1998, pp. 284–297.

    Google Scholar 

  62. D.A. Hopwood and C. Khosla, in: DJ. Chadwick and J. Whelan (eds.): Secondary Metabolites: Their Function and Evolution, Ciba Foundation Symposium Series 171, J. Wiley, Chichester 1992, pp. 88–112.

    Google Scholar 

  63. R. McDaniel, S. Ebert-Khosla, D.A. Hopwood and C. Khosla: Science 262, 1546–1550 (1993).

    Article  PubMed  CAS  Google Scholar 

  64. C.J. Tsoi and C. Khosla: Chemistry & Biology 2, 355–362 (1995).

    Article  CAS  Google Scholar 

  65. R. Pieper, C. Kao, C. Khosla, G. Luo and D.E. Cane: Chem. Rev. 25, 297–302 (1996).

    Article  Google Scholar 

  66. J.R. Jacobsen, C.R. Hutchinson, D.E. Cane and C. Khosla: Science 277, 367–369 (1997).

    Article  PubMed  CAS  Google Scholar 

  67. C.R. Hutchinson, H. Decker, P. Guilfoile, B. Shen, R. Summers, E. Wendt-Pienkowski and B. Wessel, in: R.J. Petroski and S.P. McCormick (eds.): Secondary-Metabolite Biosynthesis and Metabolism, Plenum Press, New York 1992, pp. 3–10.

    Chapter  Google Scholar 

  68. L. Katz and S. Donadio: Annu. Rev. Microbiol. 47, 875–912 (1993).

    Article  PubMed  CAS  Google Scholar 

  69. S. Donadio, M.J. Staver, J.B. McAlpine, S.J. Swanson and L. Katz: Science 252, 675–679 (1991).

    Article  PubMed  CAS  Google Scholar 

  70. L. Katz and C.R. Hutchinson: Annu. Reports in Medicinal Chem. 27, 129–138 (1992).

    Article  CAS  Google Scholar 

  71. L. Katz: Chem. Rev. 97, 2557–2575 (1997).

    Article  PubMed  CAS  Google Scholar 

  72. C. Khosla: Chem. Rev. 97, 2577–2590 (1977).

    Article  Google Scholar 

  73. CM. Kao, M. McPherson, R.N. McDaniel, H. Fu, D.E. Cane and C. Khosla: J. Amer. Chem. Soc. 120, 2478–3479 (1998).

    Article  CAS  Google Scholar 

  74. A.EA. Mardsen, B. Wilkinson, J. Cortes, N.J. Dunster, J. Staunton and P.F. Leadlay: Science 279, 199–202 (1998).

    Article  Google Scholar 

  75. R.L. Rawls: Chemical & Engineering News, March 9, 1998, pp. 29-32.

    Google Scholar 

  76. YL. Khmelnitsky, P.C. Michels, J.S. Dodick and D.S. Clark, in: I.M. Chaiken and K.D. Janda (eds.): Molecular Diversity and Combinatorial Chemistry, American Chemical Society, Washington, D.C. 1998, pp. 144–157.

    Google Scholar 

  77. S.K. Wrigley and M.I. Chicarelli-Robinson: Annu. Reports in Medicinal Chem. 32, 285–294 (1997).

    Article  CAS  Google Scholar 

  78. T. Friedmann, in: Special Report; Making Gene Therapy Work, Sci. Amer., June 1997, pp. 96-101.

    Google Scholar 

  79. P.L. Feigner, in: Special Report, Making Gene Therapy Work, Sci. Amer., June 1997, pp. 102-110.

    Google Scholar 

  80. R.M. Blaese, in: Special Report, Making Gene Therapy Work, Sci. Amer., June 1997, pp. 111-115.

    Google Scholar 

  81. D.Y. Ho and R.M. Sapolsky, in: Special Report, Making Gene Therapy Work, Sci. Amer., June 1997, pp. 116-120.

    Google Scholar 

  82. S. Mirsky and J. Rennie, in: Special Report, Making Gene Therapy Work, Sci. Amer., June 1997, pp. 122-123.

    Google Scholar 

  83. P.L. Feigner, M.J. Heller, P. Lehn, J.P. Behr and F.C. Szoka (eds.): Artificial Self-Assembling Systems for Gene Delivery, American Chemical Society, Washington, D.C. 1996.

    Google Scholar 

  84. X. Zhao, in: P.L. Feigner, MJ. Heller, P. Lehn, J.P. Behr and F.C. Szoka (eds.): Artificial Self-Assembling Systems for Gene Delivery, American Chemical Society, Washington, D.C. 1996, pp. 63–71.

    Google Scholar 

  85. J.C. Perales, M. Molas and R.W. Hanson, in: P.L. Feigner, M.J. Heller, P. Lehn, J.P. Behr and F.C. Szoka (eds.): Artificial Self-Assembling Systems for Gene Delivery American Chemical Society, Washington, D.C. 1996, pp. 105–119.

    Google Scholar 

  86. A. Kichler, W. Zauner, C. Morrison and E. Wagner, in: P.L. Feigner, MJ. Heller, P. Lehn, J.P. Behr and F.C. Szoka (eds.): Artificial Self-Assembling Systems for Gene Delivery, American Chemical Society, Washington, D.C. 1996, pp. 120–128.

    Google Scholar 

  87. B.A. Demeneix and J.P. Behr, in: P.L. Feigner, M.J. Heller, P. Lehn, J.P. Behr and F.C. Szoka (eds.): Artificial Self-Assembling Systems for Gene Delivery, American Chemical Society, Washington, D.C. 1996, pp. 146–151.

    Google Scholar 

  88. S.B. Levy: Sci. Amer., March 1998, pp. 46-53.

    Google Scholar 

  89. D. Ferber: Science 280, 27 (1998).

    Article  PubMed  CAS  Google Scholar 

  90. R.V. Miller: Sci. Amer., January 1998, pp. 66-71.

    Google Scholar 

  91. F. Flam: Science 265, 1032–1033 (1994).

    Article  PubMed  CAS  Google Scholar 

  92. F.H. Arnold: Acc. Chem. Res. 31, 125–131 (1998).

    Article  CAS  Google Scholar 

  93. A.A. Beaudry and G.F. Joyce: Science 257, 635–641 (1992).

    Article  PubMed  CAS  Google Scholar 

  94. N. Lehman and G. F. Joyce, “Evolution in Vitro: Analysis of a Lineage of Ribozymes”, Current Biology, 3, 723–724 (1993).

    Article  CAS  Google Scholar 

  95. N. Lehman and G. F. Joyce: Nature 361, 182–185 (1993).

    Article  PubMed  CAS  Google Scholar 

  96. M.C. Wright and G.F. Joyce: Science 276, 614–617 (1997).

    Article  PubMed  CAS  Google Scholar 

  97. A.D. Ellington, M.P. Robertson and J. Bull: Science 276, 546–547 (1997).

    Article  PubMed  CAS  Google Scholar 

  98. Chemical & Engineering News, Dec. 22, 1997, p. 37.

    Google Scholar 

  99. G. Cziko: Without Miracles, Universal Selection Theory and the Second Darwinian Revolution, The MIT Press, Cambridge, MA 1995, pp. 274–277.

    Google Scholar 

  100. M.R. Rose, T.J. Nusbaum and A.K. Chippindale, in: M.R. Rose and G.V. Lauder (eds.): Adaptation, Academic Press, New York 1996, pp. 221–241.

    Google Scholar 

  101. J.W. Szostak: Chem. Rev. 97, 347–348 (1997).

    Article  PubMed  CAS  Google Scholar 

  102. R.R. Breaker: Chem. Rev. 97, 371–390 (1997).

    Article  PubMed  CAS  Google Scholar 

  103. N. Usman and J.A. McSwiggen: Annu. Reports in Medicinal Chem. 30, 285–294 (1995).

    Article  CAS  Google Scholar 

  104. V.M. Kolb: Progress in Drug Research 48, 195–232 (1997).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Basel AG

About this chapter

Cite this chapter

Kolb, V.M. (1998). Biomimicry as a basis for drug discovery. In: Jucker, E. (eds) Progress in Drug Research. Progress in Drug Research, vol 51. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8845-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8845-5_5

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9798-3

  • Online ISBN: 978-3-0348-8845-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics