Skip to main content

Genetic Models of Bacterial Lung Infection

  • Chapter
Molecular Biology of the Lung

Part of the book series: espiratory harmacology and harmacotherapy ((RPP))

  • 83 Accesses

Abstract

The lung is a point of intimate contact of the host with its environment and as such is a key point of interaction between animals and microbes. A range of host defence mechanisms exists to protect the lung from infection. These defence mechanisms include physical defences such as the filtration of air and the mucociliary escalator as well as the innate immune mechanisms such as the alveolar macrophage. The activity of these cells is augmented by the presence of various opsonins within the lung, including complement components and immunoglobulins. The inflammatory response and specific immune response in the lung are controlled by a range of cytokines and other immune mediators. To cause disease an invading pathogen must be able to subvert these normal defences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gross GN, Rehm SR, Pierce AK (1978) The effect of complement depletion on lung clearance of bacteria. J Clin Invest 21: 373–378

    Article  Google Scholar 

  2. Robertson J, Cladwell JR, Castle JR, Waldman RH (1976) Evidence for the presence of components of the alternative (properdin) pathway of complement activation in respiratory secretions. J Immunol 117: 900–903

    PubMed  CAS  Google Scholar 

  3. Coonrod JD, Yoneda K (1981) Complement and opsonins in alveolar secretions and serum of rats with pneumonia due to Streptococcus pneumoniae. Rev Infect Dis 3: 310–322

    Article  PubMed  CAS  Google Scholar 

  4. Heidbrink PJ, Toews GB, Gross GN, Pierce AK (1982) Mechanisms of complement mediated clearance of baccteria from the murine lung. Am Rev Respir Dis 125: 517–520

    PubMed  CAS  Google Scholar 

  5. Coonrod JD, Yoneda K (1982) Comparative role of complement in pneumococcal and Staphylococcal pneumonia. Infect Immun 37: 1270–1277

    PubMed  CAS  Google Scholar 

  6. Wood WB Jr (1951) Studies on the cellular immunology of acute bacterial infections. Harvey Lect 47: 72–98

    PubMed  Google Scholar 

  7. Bakker-Woudenberg IAJM, deJong-Hoenderop JYT, Michel MF (1979) Efficacy of antimicrobial therapy in rat pneumonia: effects of impaired phagocytosis. Infect Immun 25: 366–375

    PubMed  CAS  Google Scholar 

  8. Guckian JC, Christiansen GD, Fine DP (1980) The role of opsonins in recovery from experimental pneumococcal pneumonia. J Infect Dis 142: 175–190

    Article  PubMed  CAS  Google Scholar 

  9. Botto M, Fong KY, So AE, Rudge A, Walport MJ (1990) Molecular basis of hereditary C3 deficiency. J Clin Invest 86: 1158–1163

    Article  PubMed  CAS  Google Scholar 

  10. Alper CA, Abramson N, Johnson RB Jr, Jandel JH, Rosen FS (1970) Increased susceptibility to infection associated with abnormalities of complement-mediated functions and of the third component of complement (C3). N EnglJ Med 282: 349–354

    Article  Google Scholar 

  11. Homann C, Vanning K, Hogasen K, Mollnes TE, Gradudal N, Thomsen AC, Garrod P (1997) Aquired C3 deficiency in patients with alcoholic cirrhosis predisposes to infection and increased mortality. Gut 40: 544–549

    PubMed  CAS  Google Scholar 

  12. Auerbach HS, Burger R, Dodds A, Colten HR (1990) Molecular basis of complement C3 deficiency in guinea pigs. J Clin Invest 86: 96–106

    Article  PubMed  CAS  Google Scholar 

  13. Winkelstein JA, Cork LC, Griffin DE, Adams RJ, Price DL (1981) Genetically determined deficiency of the third component of complement in the dog. Science 212: 1169–1173

    Article  PubMed  CAS  Google Scholar 

  14. O’Neil KM, Ochs HD, Heller SR, Cork LC, Morris JM, Winkelstein JA (1988) Role of C3 in humoral immunity. J Immunol 140: 1939–1945

    PubMed  Google Scholar 

  15. Ameratunga R, Winkelstein JA, Brody L, Binns M, Cork LC, Colombani P, Valle D (1998) Molecular analysis of the third component of canine complement (C3) and identification of the mutation responsible for hereditary canine C3 deficiency. J Immunol 160: 2824–2830

    PubMed  CAS  Google Scholar 

  16. Toews GB, Vial WC (1984) The role of C5 in polymorphonuclear leukocyte recritment in response to Streptococcuspneumoniae. Annu Rev Respir Dis 129: 82–86

    CAS  Google Scholar 

  17. Hopken UE, Lu B, Gerard NP, Gerard C (1996) The C5a chemoattractant receptor mediates mucosal defence to infection. Nature 383: 86–89

    Article  PubMed  CAS  Google Scholar 

  18. Anderson DC, Schmalsteig FC, Kohl S, Arnaout MA, Hughes BJ, Towse MF, Bafoney GJ, Brinkley BR, Dickey WD, Abramson JS et al. (1984) Abnormalities of polymorphonuclear leukocyte function associated with a heritable deficiency of high molecular weight surface glycoprotein (gpl38): common relationship to diminished cell adherence. J Clin Invest 74: 546–555

    Article  Google Scholar 

  19. Arnaout MA, Pitt J, Cohen HJ, Melamed J, Rosen FS, Colten HR (1982) Deficiency in a granulocyte-membrane glycoprotein (gpl50) in a boy with recurrent bacterial infections. N EnglJ Med 305: 693–699

    Article  Google Scholar 

  20. Bowen TJ, Ochs HD, Altman LC, Price HC, van Epps DE, Brautigan DC, Rosin RE, Perkins WD, Babior BM, Klebanoff SJ et al. (1982) Severe recurrent bacterial infections associated with defective adherance and chemotaxis in two patients with neutrophils deficient in a cell-associated glycoprotein. J Pediatr 101: 932–940

    Article  PubMed  CAS  Google Scholar 

  21. Crowley CA, Curnutte JT, Rosin RE, Andre-Schwartz J, Gallin JI, Kiemphar M, Snyderman R, Southwick F, Stossel TP, Babior BM (1980) An inherited abnormality of neutrophil adhesion: its genetic transmission and its association with the missing protein. N Engl J Med 302: 1163–1168

    Article  PubMed  CAS  Google Scholar 

  22. Oxelius V-A (1974) Chronic infections in a family with hereditary deficiency of IgG2 and IgG4. Clin Exp Immunol 17: 19–24

    PubMed  CAS  Google Scholar 

  23. Bjorkander J, Bake B, Oxelius V-A, Hanson LA (1985) Impaired lung function in patients with IgA deficiency and low levels of IgG2 or IgG3. N Engl J Med 313: 720–724

    Article  PubMed  CAS  Google Scholar 

  24. Morgan KL, Hussein AM, Newby TJ, Bourne FJ (1980) Quantification and origin of the immunoglobulins in procine respiratory tract secretions. Immunology 41: 729–736

    PubMed  CAS  Google Scholar 

  25. Merrill WW, Naegel GP, Olchowski JJ, Reynolds HY (1985) Immunoglobulin subclass proteins in serum and lavage fluid of normal subjects: quantitation and comparison with immunoglobulin A and E. Am Rev Respir Dis 131: 584–587

    PubMed  CAS  Google Scholar 

  26. Jakab GJ (1976) Factors influencing the immune enhancement of intrapulmonary bactericidal mechanisms. Infect Immun 14: 389–398

    PubMed  CAS  Google Scholar 

  27. Dunn MM, Toews GB, Hart D, Pierce AK (1985) The effects of systemic immunization on pulmonary clearance of Pseudomonas aeruginosa. Am Rev Respir Dis 131: 426–431

    PubMed  CAS  Google Scholar 

  28. Hansen EJ, Hart DA, McGehee JL (1988) Immune enhancement of pulmonary clearance of nontypable Haemophilus influenzae. Infect Immun 56: 182–190

    PubMed  CAS  Google Scholar 

  29. Pennington JE, Hickey WF, Blackwood LL (1981) Active immunization with lipopolysac-charide Pseudomonas antigen for chronic Pseudomonas bronchopneumonia in guinea pigs. J Clin Invest 68: 1140–1148

    Article  PubMed  CAS  Google Scholar 

  30. Toews GB, Hart DA, Hansen EJ (1985) Effect of systemic immunisation on pulmonary clearance of Haemophilus influenzae type b. Infect Immun 48: 343–349

    PubMed  CAS  Google Scholar 

  31. Hill SL, Mitchell JL, Burnett D, Stockley RA (1998) IgG subclasses in sputum from patients with bronchiectasis. Thorax 53: 463–468

    Article  PubMed  CAS  Google Scholar 

  32. Uderdown BJ, Schiff JM (1986) Immunoglobulin A: strategic defence at the mucosal surface:. Annu Rev Immunol 4: 389–417

    Article  Google Scholar 

  33. a Orga PL, Karzou DT, Righthand F, MacGillivray M (1968) Immunoglobulin responses in serum and secretions after immunisation with live and inactivated polio vaccine and natural infection. N Engl J Med 279: 893–900

    Article  Google Scholar 

  34. b Plant AG (1983) The IgA proteases of pathogenic bacteria. Ann Rev Microbiol 37: 603–622

    Article  Google Scholar 

  35. Kitamura D, Roes J, Kuhm R, Rajewsky K (1991) A B cell-deficient mouse by targeted disruption of the membrane exon of the immunoglobulin μ chain gene. Nature 350: 423–426

    Article  PubMed  CAS  Google Scholar 

  36. Gordon JW, Scangos GA, Plotkin DJ, Barbosa JA, Ruddle FH (1980) Genetic transformation of mouse embryos by microinjection of purified DNA. Proc Natl Acad Sci USA 11: 7380–73

    Article  Google Scholar 

  37. Hogan B, Constantini F, Lacy E (1986) Manipulating the mouse embryo: A laboratory manual. Cold Spring Harbor, New York

    Google Scholar 

  38. Field LJ (1993) Transgenic mice in cardiovascular research. Annu Re Physiol 55: 97–114

    Article  CAS  Google Scholar 

  39. Gordon JW, Ruddle FH (1983) Gene transfer into mouse embryos: production of transgenic mice by pronuclear infection. Methods Enzymol 101: 411–433

    Article  PubMed  CAS  Google Scholar 

  40. Ho Y-S (1994) Transgenic models for the study of lung biology and disease. Am J Physiol 10: L319–L353

    Google Scholar 

  41. Friis-Christiansen P, Thiel S, Svehag S-E, Dessau R, Svendsen R, Andersen O, Lauren SB, Jensenius JC (1990) In vivo and in vitro antibacterial activity of conglutinin, a mammalian plant lectin. Scand J Immunol 31: 453–460

    Article  PubMed  CAS  Google Scholar 

  42. Ezekowitz RAB, Kuhlman M, Groopman JE, Byrn RA (1989) A human-serum mannose-binding protein inhibits in vitro infection by the human immunodeficiency virus. J Exp Med 169: 185–196

    Article  PubMed  CAS  Google Scholar 

  43. McNeeley TB, Coonrod JD (1993) Comparison of the opsonic activity of human surfactant protein A for Staphylococcus aureus and Streptococcus pneumoniae with rabbit and human macrophages. J Infect Dis 167: 91–97

    Article  Google Scholar 

  44. Kuan SF, Rust K, Crouch E (1992) Interactions of surfactant protein D with bacterial lipo-polysaccharide. J Clin Invest 90: 97–106

    Article  PubMed  CAS  Google Scholar 

  45. Super M, Thiel JS, Lu J, Levinsky RJ, Turner MW (1989) Association of low levels of man-nan binding protein with a common defect of opsonisation. Lancet ii: 1236–12

    Article  Google Scholar 

  46. Baughman RP, Sternberg RI, Hull W, Buchsbaum JA, Whitsett J (1993) Decreased surfactant protein A in patients with bacterial pneumonia. Am Rev Respir Dis 147: 653–657

    PubMed  CAS  Google Scholar 

  47. LeVine AM, Lotze A, Stanley S, Stroud C, O’Donnell R, Whitsett J, Pollack MM (1996) Surfactant content in children with inflammatory lung disease. Crit Care Med 24: 1062–1067

    Article  PubMed  CAS  Google Scholar 

  48. Wispe JR, Clark JC, Warner BB, Fajardo D, Hull WE, Holtzman RB, Whitsett JA (1990) Tumor necrosis factor alpha inhibitx expression of pulmonary surfactant protein. J Clin Invest 86: 1954–1960

    Article  PubMed  CAS  Google Scholar 

  49. Pison U, Wright JR, Hawgood S (1992) Specific binding of surfactant protein apoprotein SP-A to rat alveolar macrophages. Am J Physiol 262: L412–L417

    PubMed  CAS  Google Scholar 

  50. Manz-Keinke H, Plattner H, Schlepper-Schafer J (1992) Lung surfactant protein A (SP-A) enhances serum independent phagocytosis of bacteria by alveolar macrophages. Eur J Cell Biol 57: 95–100

    PubMed  CAS  Google Scholar 

  51. Van Iwaarden F, Welmers B, Verhoef J, Haagsman HP, van Golde LMG (1990) Pulmonary surfactant protein A enhances the host defence mechanism of rat alveolar macrophages. Am J Respir Cell Mol Biol 2: 91–98

    PubMed  Google Scholar 

  52. LeVine AM, Bruno MD, Huelsman KM, Ross GF, Whitsett JA, Korfhagen TR (1997) Surfactant protein A-deficient mice are susceptible to group B streptococcal infection. J Immunol 158: 4336–4340

    PubMed  CAS  Google Scholar 

  53. Wessels MR, Butko P, Ma M, Warren HB, Lage AL, Carroll MC (1995) Studies of group B streptococcal infection in mice deficient in complement component C3 or C4 demonstrate an essential role for complement in both inate and aquired immunity. Proc Natl Acad Sci USA 92: 11490–11494

    Article  PubMed  CAS  Google Scholar 

  54. Williams DM, Grubbs BG, Pack E, Kelly K, Rank RG (1997) Humoral and cellular immunity in secondary infection due to murine Chlamydia trachomatis. Infect Immun 65: 2876–2882

    PubMed  CAS  Google Scholar 

  55. Mombaerts P, Clarke AR, Hooper ML, Tonegawa S (1991) Creation of a large genomic deletion at the T cell antigen receptor beta-subunit locus in mouse embryonic stem-cells by gene targetting. Proc Natl Acad Sci USA 88: 3084–3087

    Article  PubMed  CAS  Google Scholar 

  56. Itohara S, Mombaerts P, Lafaille J, Iacomi J, Nelson J, Clarke AR, Hooper ML, Farr A, Tone-gawa S (1993) T-cell receptor delta-gene mutant mice-independet generation of alpha-beta T-cells and programmed rearrangements of gamma-delta TCR genes. Cell 72: 337–348

    Article  PubMed  CAS  Google Scholar 

  57. Grusby MJ, Johnson RS, Papaioannou VE, Glimcher LH (1991) Depletion of CD4+ T cells in major histocompatability complex II-deficient mice. Science 253: 1417–1420

    Article  PubMed  CAS  Google Scholar 

  58. Koller BH, Smithies O (1989) Inactivating the β-microglobulin locus in mouse embryonic stem cells by homologous recombination. Proc Natl Acad Sci USA 86: 8932–8935

    Article  PubMed  CAS  Google Scholar 

  59. Kaufmann SHE, Ladel CH (1994) Application of knock-out mice to the experimental analysis of infections with bacteria and protozoa. Trends Microbiol 2: 235–242

    Article  PubMed  CAS  Google Scholar 

  60. Flynn JL, Goldstein MM, Triebold KJ, Koller BBRB (1992) Major histocompatiability complex class-I restricted T cells are required for resistance to Mycobacterium tuberculosis infection. Proc Natl AcadSci USA 89: 12013–12017

    Article  CAS  Google Scholar 

  61. Laochumroomvorapong P, Wang J, Chau-Ching L, Ye W, Moreira AL, Elkon KB, Freedman VH, Kaplan G (1997) Perforin, a cytotoxic molecule which mediates cell necrosis, is not required for the control of early mycobacterial infection in mice. Infect Immun 65: 127–132

    Google Scholar 

  62. Flesch IE, Hess JH, Huang S, Aguet M, Rothe J, Bluethmann H, Kaufmann SHE (1995) Early interleukin 12 production by macrophages in response to mycobacterial infection depends on interferon y and tumor necrosis factor α. J Exp Med 181: 1615–1621

    Article  PubMed  CAS  Google Scholar 

  63. Fulton SA, Johnson JM, Wolf SF, Sieburth DS, Bloom WH (1996) Interleukin-12 production by human monocytes infected with Mycobacterium tuberculosis: Role of phagocytosis. Infect Immun 64: 2523–2531

    PubMed  CAS  Google Scholar 

  64. Cooper AM, Roberts AD, Rhoades ER, Callahan JE, Getzy DM, Orme IM (1995) The role of interleukin-12 in aquired immunity to Mycobacterium tuberculosis infection. Immunology 84: 423–432

    PubMed  CAS  Google Scholar 

  65. Vordmeier HM, Kenkataprasad N, Harris DP, Ivanyi J (1996) Increase of tuberculous infection in the organs of B-cell-deficient mice. Clin Exp Immunol 106: 312–316

    Article  Google Scholar 

  66. Rubins JB, Pomeroy C (1997) Role of gamma interferon in the pathogenesis of bacteremic pneumococcal pneumonia. Infect Immun 65: 2975–2977

    PubMed  CAS  Google Scholar 

  67. Taylor-Robinson AW, Phillips RS (1996) Reconstitution of B-cell depleted mice with B-cells restores the Th2-type immune response during Plasmodium chabaudi chaubdi infection. Infect Immun 64: 366–370

    PubMed  CAS  Google Scholar 

  68. Cooper AM, Dalton DK, Stewart TA, Griffin JP, Russell DG, Orme IM (1993) Disseminated tuberculosis in interferon-gamma gene-disrupted mice. J Exp Med 178: 2243–2247

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Basel AG

About this chapter

Cite this chapter

Mitchell, T.J. (1999). Genetic Models of Bacterial Lung Infection. In: Stockley, R.A. (eds) Molecular Biology of the Lung. Respiratory Pharmacology and Pharmacotherapy. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8831-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8831-8_8

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9791-4

  • Online ISBN: 978-3-0348-8831-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics