Skip to main content

The Best Doob-Type Bounds for the Maximum of Brownian Paths

  • Conference paper

Part of the book series: Progress in Probability ((PRPR,volume 43))

Abstract

Let B = (B t)t≥o be standard Brownian motion started at zero. Then the following inequality is shown to be satisfied:

$$ E\left( {\mathop {0 \le t \le \tau \,|{B_t}{|^p}}\limits^{\max } } \right) \le \mathop \gamma \nolimits_{p,q}^* {\left( {E\int_0^\tau {|{B_t}{|^{q - 1}}dt} } \right)^{p/\left( {q + 1} \right)}} $$

for all stopping times τ for B, all 0 < p < 1 + q, and all q > 0, with the best possible value for the constant being equal:

$$ \Upsilon _{p,q}^* = (1 + k)\left( {\frac{{s_* }} {{k^k }}} \right)^{1/(1 + k)} $$

where k = p/(q-p + l), and s* is the zero point of the (unique) maximal solution s ↦,g* (s) of the differential equation:

$$ {g^\alpha }\left( s \right)\left( {{s^\beta } - {g^\beta }\left( s \right)} \right){{dg} \over {ds}}\left( s \right) = K $$

satisfying 0 < g*(s) < s for all s > s*, where α = q/p — 1, β = 1/p and K = p/2. This solution is also characterized by g*(s)/s → 1 for s → ∞. The equality above is attained at the stopping time:

$${\tau _*} = \inf \left\{ {t > 0|{X_t} = {g_*}\left( {{S_t}} \right)} \right\}$$

where X t = |B t|p and \({S_t} = {\max _{0 \le r \le t}}|{B_r}{|^p}\). In the case p = 1 the closed form for sg*(s) is found. This yields \(\mathop \gamma \nolimits_{1,q}^* = {\left( {q\left( {q + 1} \right)/2} \right)^{1/\left( {q + 1} \right)}}{\left( {\Gamma \left( {1 + \left( {q + 1} \right)/q} \right)} \right)^{q/\left( {q + 1} \right)}}\) for all q > 0. In the case p ≠ 1 no closed form for sg*(s) seems to exist. The inequality above holds also in the case p = q +1 (Doob’s maximal inequality). In this case the equation above ( with K = p/2c ) admits g* (s) = λs as the maximal solution, and the equality is attained only in the limit through the stopping times τ* = τ* (c) when c tends to the best value \(\mathop \gamma \nolimits_{q + 1,q}^* = {\left( {q + 1} \right)^{q + 2}}/2{q^q}\) from above. The method of proof relies upon the principle of smooth fit of Kolmogorov and the maximality principle. The results obtained extend to the case when B starts at any given point, as well as to all non-negative submartingales.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Azema, J. and Yor, M. (1979). Une solution simple au probleme de Skorokhod. Lecture Notes in Math. 721, Springer (90–115).

    Article  MathSciNet  Google Scholar 

  2. Cox, D. C. (1984). Some sharp martingale inequalities related to Doob’s inequality. IMS Lecture Notes Monograph Ser. 5 (78–83).

    Article  Google Scholar 

  3. Doob, J. L. (1953). Stochastic Processes. John Wiley & Sons.

    Google Scholar 

  4. Dubins, L. E. and Gilat, D. (1978). On the distribution of maxima of martingales. Proc. Amer. Math. Soc. 68 (337–338).

    MathSciNet  MATH  Google Scholar 

  5. Dubins, L. E. and Schwarz, G. (1988). A sharp inequality for sub-martingales and stopping times. Astérisque 157–158 (129-145).

    Google Scholar 

  6. Dubins, L. E. Shepp, L. A. and Shiryaev, A. N. (1993). Optimal stopping rules and maximal inequalities for Bessel processes. Teor. Veroyatnost. i Primenen. 38 (288–330) (Russian); (226-261) (English translation).

    MathSciNet  MATH  Google Scholar 

  7. Gilat, D. (1986). The best bound in the L log L-inequality of Hardy and Littlewood and its martingale counterpart. Proc. Amer. Math. Soc. 97 (429–436).

    MathSciNet  MATH  Google Scholar 

  8. Gilat, D. (1988). On the ratio of the expected maximum of a martingale and the L p-norm of its last term. Israel J. Math. 63 (270–280).

    Article  MathSciNet  MATH  Google Scholar 

  9. Graversen, S. E. and Peškir, G. (1994). Solution to a Wald’s type optional stopping problem for Brownian motion. Math. Inst. Aarhus, Preprint Ser. No. 10 (15 pp). To appear in J. Appl. Probab.

    Google Scholar 

  10. Graversen. S. E. and Peškir, G. (1995). Optimal stopping and maximal inequalities for linear diffusions. Research Report No. 335, Dept. Theoret. Statist. Aarhus (18 pp). To appear in J. Theoret. Probab.

    Google Scholar 

  11. Graversen, S. E. and Peškir, G. (1996). Optimal stopping in the L log L-inequality of Hardy and Littlewood. Research Report No. 360, Dept. Theoret. Statist. Aarhus (12 pp). To appear in J. London Math. Soc.

    Google Scholar 

  12. Hardy, G. H. and Littlewood, J. E. (1930). A maximal theorem with functiontheoretic applications. Acta Math. 54 (81–116).

    Article  MathSciNet  MATH  Google Scholar 

  13. Jacka, S. D. (1988). Doob’s inequalities revisited: A maximal H 1 embedding. Stochastic Process. Appl. 29 (281–290).

    Article  MathSciNet  MATH  Google Scholar 

  14. Jacka, S. D. (1991). Optimal stopping and best constants for Doob-like inequalities I: The case p = 1. Ann. Probab. 19 (1798–1821).

    Article  MathSciNet  MATH  Google Scholar 

  15. Revuz, D. and Yor, M. (1994). Continuous Martingales and Brownian Motion. Springer-Verlag.

    Google Scholar 

  16. Wang, G. (1991). Sharp maximal inequalities for conditionally symmetric martingales and Brownian motion. Proc. Amer. Math. Soc. 112 (579–586).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Basel AG

About this paper

Cite this paper

Peškir, G. (1998). The Best Doob-Type Bounds for the Maximum of Brownian Paths. In: Eberlein, E., Hahn, M., Talagrand, M. (eds) High Dimensional Probability. Progress in Probability, vol 43. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8829-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8829-5_18

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9790-7

  • Online ISBN: 978-3-0348-8829-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics