Skip to main content

On a Connection between Ovoids on the Hyperbolic Quadric Q +(10, q) and the Lie Incidence Geometry E 6,1(q)

  • Conference paper
Groups and Geometries

Part of the book series: Trends in Mathematics ((TM))

Abstract

It is demonstrated that the existence of an ovoid on the hyperbolic quadric Q+(10, q) implies the existence of a co-clique of maximal possible cardinality in the collinear graph of the Lie Incidence Geometry E 6,1(q).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Aschbacher, The 27-dimensional module for E 6 I, Inventiones Mathemat-icae 89 (1987), 159–184.

    Article  MathSciNet  MATH  Google Scholar 

  2. A. Blokhuis and G.E. Moorhouse, Some p-ranks related to Orthogonal Spaces, J. of Algebraic Combinatorics 4 (1995), 529–551.

    MathSciNet  Google Scholar 

  3. A.E. Brouwer, A.M. Cohen and A. Neumaier, “Distance Regular Graphs”, Springer-Verlag, Berlin, 1989.

    Book  MATH  Google Scholar 

  4. A. Cohen, Point-Line Spaces Related to Buildings in “Handbook of Incidence Geometry” (F. Buckenhout ed.), Elsevier, New York 1995.

    Google Scholar 

  5. A. Cohen and B. Cooperstein, A characterization of some geometries of exceptional Lie type, Geometriae Dedicata 15 (1983), 73–105.

    Article  MathSciNet  MATH  Google Scholar 

  6. J.H. Conway, P.B. Kleidman and R.A. Wilson, New Families of ovoids in O + 8, Geometriae Dedicata 26 (1988), 157–170.

    Article  MathSciNet  MATH  Google Scholar 

  7. B. Cooperstein, A characterization of some Lie incidence geometries, Geometriae Dedicata 6 (1977), 205–258.

    Article  MathSciNet  MATH  Google Scholar 

  8. B. Cooperstein, A note on tensor products of polar spaces over finite fields, Bull. Belg. Math. Soc. 2 (1995), 253–257.

    MathSciNet  MATH  Google Scholar 

  9. R.H. Dye, Maximal sets of non-polar points of quadrics and symplectic polarities over GF(2), Geometriae Dedicata 44 (1992), 281–294.

    Article  MathSciNet  MATH  Google Scholar 

  10. W. Kantor, Ovoids and translation planes, Can. J. of Mathematics 34 (1982), 1195–1207.

    Article  MathSciNet  MATH  Google Scholar 

  11. G. Mason and E. Shult, The Klein correspondence and the ubiquity of certain translation planes, Geometriae Dedicata 21 (1986), 29–59.

    Article  MathSciNet  MATH  Google Scholar 

  12. G.E. Moorhouse, Root Lattice Constructions of Ovoids, in “Finite Geometry and Combinatorics”, Cambridge University Press, Cambridge, 1992.

    Google Scholar 

  13. G.E. Moorhouse, Ovoids from the E 8 root lattice, Geometriae Dedicata 46 (1993), 287–297.

    Article  MathSciNet  MATH  Google Scholar 

  14. J.-P. Serre, “A Course in Arithmetic”, Springer-Verlag, New York, 1973.

    Book  MATH  Google Scholar 

  15. E. Shult, The Non-existence of ovoids in O +(10,3), J. of Combinatorial Theory Ser. A 51 (1989), 250–257.

    Article  MathSciNet  MATH  Google Scholar 

  16. J.A. Thas, Ovoids and spreads of finite classical polar spaces, Geometriae Dedicata 10 (1981), 135–144.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Basel AG

About this paper

Cite this paper

Cooperstein, B.N. (1998). On a Connection between Ovoids on the Hyperbolic Quadric Q +(10, q) and the Lie Incidence Geometry E 6,1(q). In: di Martino, L., Kantor, W.M., Lunardon, G., Pasini, A., Tamburini, M.C. (eds) Groups and Geometries. Trends in Mathematics. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8819-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8819-6_5

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9785-3

  • Online ISBN: 978-3-0348-8819-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics