Skip to main content

Canonical systems with a semibounded spectrum

  • Chapter

Part of the book series: Operator Theory Advances and Applications ((OT,volume 106))

Abstract

We consider a singular two-dimensional canonical system Jy’ = −zHy on [0, L) such that at L Weyl’s limit point case holds. Here H is a real and nonnegative definite matrix function, the so-called Hamiltonian. From results of L. de Branges it follows that the correspondence between canonical systems (or their Hamiltonians H) and their Titchmarsh-Weyl coefficients is a bijection between the class of trace normed Hamiltonians H and the class of Nevanlinna functions. In this note we show that the Hamiltonian H of a canonical system with a semibounded spectrum has the property det H = 0 and that its components are functions of locally bounded variation. Further, a characterization of the class of Hamiltonians corresponding to canonical systems with a finite number of negative (or positive) eigenvalues is given.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N.L Achieser and I.M. Glasmann: Theorie der linearen Operatoren im Hilbert Raum. Akademie-Verlag, Berlin, 1954.

    MATH  Google Scholar 

  2. N.I. Akhiezer: The Classical Moment Problem. Oliver & Boyd, Edinburgh, 1965.

    MATH  Google Scholar 

  3. L. De Branges: Some Hilbert spaces of entire functions. Trans. Amer. Math. Soc. 96 (1960), 259–295; 99 (1961), 118-152; 100 (1960), 73-115; 105 (1962), 43-83.

    Article  MathSciNet  MATH  Google Scholar 

  4. L. De Branges: Hilbert Spaces of Entire Functions. Prentice Hall, Englewood Cliffs, N.J., 1968.

    MATH  Google Scholar 

  5. D.L. Cohn: Measure Theory. Birkhäuser Verlag, Boston, 1980.

    MATH  Google Scholar 

  6. H. Dym and A. Iacob: Positive definite extensions, canonical equations and inverse problems. Operator Theory: Advances and Applications, vol.12 Birkhäuser Verlag, Basel, 1984, pp. 141–240.

    Google Scholar 

  7. F.R. Gantmacher: Matrizentheorie. Deutscher Verlag der Wissenschaften, Berlin, 1986.

    Book  MATH  Google Scholar 

  8. T. Kato: Perturbation Theory for Linear Operators. Springer-Verlag, Berlin, Heidelberg, New York, 1980.

    MATH  Google Scholar 

  9. I.S. Kac: Linear relations, generated by a canonical differential equation on an interval with a regular endpoint, and expansibility in eigenfunctions (Russian). Deposited paper 517.9, Odessa, 1984.

    Google Scholar 

  10. M.G. Krein and H. Langer: Über einige Fortsetzungsprobleme, die eng mit der Theorie hermitescher Operatoren im Raume IIK zusammenhängen. I. Einige Funktionenklassen und ihre Darstellungen. Math. Nachr. 77 (1977), 187–236.

    Article  MathSciNet  MATH  Google Scholar 

  11. M.G. Krein and H. Langer: On some extension problems which are closely connected with the theory of hermitian operators in a space IIK. III. Indefinite analogues of the Hamburger and Stieltjes moment problems. Part (1): Beiträge zur Analysis 14 (1979), 25–40. Part (2): Beiträge zur Analysis 15 (1981), 27-45.

    MathSciNet  Google Scholar 

  12. H. Langer: Spektralfunktionen einer Klasse von Differentialoperatoren zweiter Ordnung mit nichtlinearem Eigenwertparameter. Ann. Acad. Sci. Fenn. Ser. A I Math. 2 (1976), 269–301.

    MathSciNet  MATH  Google Scholar 

  13. H. Langer and H. Winkler: Direct and inverse spectral problems for generalized strings. (submitted).

    Google Scholar 

  14. I.P. Natanson: Theorie der Funktionen einer reellen Veränderlichen. Akademie-Verlag, Berlin, 1981.

    MATH  Google Scholar 

  15. A.L. Sakhnovich: Spectral functions of a canonical system of order 2n. Math. USSR Sbornik 71 (1992), 355–369.

    Article  MathSciNet  Google Scholar 

  16. L.A. Sakhnovich: The method of operator identities and problems of analysis. Algebra and Analysis 5 (1993), 4–80.

    Google Scholar 

  17. H. Winkler: The inverse spectral problem for canonical systems. Integral Equations Operator Theory 22 (1995), 360–374.

    Article  MathSciNet  MATH  Google Scholar 

  18. H. Winkler: On transformations of canonical systems. Operator Theory: Advances and Applications, vol. 80, Birkhäuser Verlag, Basel, 1995, pp. 276–288.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

Dedicated to Heinz Langer on the occasion of his 60th birthday

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Basel AG

About this chapter

Cite this chapter

Winkler, H. (1998). Canonical systems with a semibounded spectrum. In: Dijksma, A., Gohberg, I., Kaashoek, M.A., Mennicken, R. (eds) Contributions to Operator Theory in Spaces with an Indefinite Metric. Operator Theory Advances and Applications, vol 106. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8812-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8812-7_22

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9782-2

  • Online ISBN: 978-3-0348-8812-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics