Skip to main content

Boltzmann Equation and Gas Surface Interaction

  • Chapter
Scaling Limits and Models in Physical Processes

Part of the book series: DMV Seminar ((OWS,volume 28))

Abstract

According to kinetic theory, a gas in normal conditions (no chemical reactions, no ionization phenomena, etc.) is formed of elastic molecules rushing hither and thither at large speeds, colliding and rebounding according to the laws of elementary mechanics. Within the scope of these notes (except in some remarks), the molecules of a gas will be assumed to be perfectly elastic spheres, or center of forces that move according to the laws of classical mechanics. Thus, e.g., if no external forces, such as gravity, are assumed to act on the molecules, each of them will move in a straight line unless it happens to strike another molecule or a solid wall.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. C. Cercignani, Transp. Theory Stat. Phys., 211–225 (1972).

    Google Scholar 

  2. O. Lanford, III, in Dynamical Systems, Theory and Applications, J. Moser, Ed., LNP 35, 1–111, Springer, Berlin (1975).

    Google Scholar 

  3. C. Cercignani, The Boltzmann Equation and its Applications, Springer, New York (1988).

    Google Scholar 

  4. R. Illner and M. Pulvirenti, Commun. Math. Phys. 105, 189–203 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  5. R. Illner and M. Pulvirenti, Comm. Math. Phys. 121 (1989), no.l, 143–146.

    Article  MathSciNet  MATH  Google Scholar 

  6. C. Cercignani, Mathematical Methods in Kinetic Theory, Plenum Press, New York (1969; revised edition 1990).

    Google Scholar 

  7. G. A. Bird, in Rarefied Gas Dynamics, S. S. Fischer, Editor, Vol. I, 239–255, AIAA, New York, (1981).

    Google Scholar 

  8. L. Arkeryd, Arch. Rat Mech. Anal. 45, 17–34 (1972).

    MathSciNet  MATH  Google Scholar 

  9. C. Cercignani, J. Stat. Phys. 58, 817–824 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  10. L. Arkeryd and C. Cercignani, Rend. Mat. Acc. Lincei s.9,11, 139–149 (1990).

    MathSciNet  Google Scholar 

  11. L. Boltzmann, Sitzungsberichte der Akademie der Wissenschaften, Wien 74, 503–552 (1876).

    Google Scholar 

  12. C. Truesdell and R. G. Muncaster, Fundamentals of Maxwell’s Kinetic Theory of a Simple Monatomic Gas, Academic Press, New York (1980).

    Google Scholar 

  13. P. L. Bhatnagar, E. P. Gross and M. Krook, Phys. Rev. 94, 511 (1954).

    Article  MATH  Google Scholar 

  14. P. Welander, Arkiv Fysik 7, 507 (1954).

    MathSciNet  MATH  Google Scholar 

  15. L. H. Holway, Jr., Ph. D. Thesis, Harvard (1963).

    Google Scholar 

  16. C. Cercignani and G. Tironi, in Rarefied Gas Dynamics, C. L. Brundin, Ed.,Vol. I, 441, Academic Press, New York (1967).

    Google Scholar 

  17. L. Sirovich, Phys. Fluids 5, 908 (1962).

    Article  MathSciNet  Google Scholar 

  18. J. L. Lebowitz, H. L. Frisch and E. Helfand, Phys. Fluids 3, 325 (1960).

    Article  MathSciNet  MATH  Google Scholar 

  19. T. F. Morse, Phys. Fluids 7, 2012 (1964).

    Article  MathSciNet  Google Scholar 

  20. F. B. Hanson and T. F. Morse, Phys. Fluids 10, 345 (1967).

    Article  Google Scholar 

  21. I. Kuscer, in Fundamental Problems in Statistical Mechanics IV, E. G. D. Cohen and W. Fiszdon, Eds., 441–467, Ossolineum, Warsaw (1978).

    Google Scholar 

  22. C. Cercignani “Scattering kernels for gas-surface interaction” (Antibes, 1990).

    Google Scholar 

  23. C. Cercignani, in Transport Theory, G. Birkhoff et al, eds., SIAM-AMS Proceedings, Vol. I, p.249, Providence (1968).

    Google Scholar 

  24. I. Kuscer, in Transport Theory Conference, AEC Report ORO-3588-1, Blacks-burgh, Va. (1969).

    Google Scholar 

  25. C. Cercignani and M. Lampis, Transport Theory and Stat. Phys. 1, 101–114 (1971).

    Article  MathSciNet  MATH  Google Scholar 

  26. I. Kuscer, Surface Science 25, 225 (1971).

    Article  Google Scholar 

  27. C. Cercignani, Transport Theory and Stat Phys. 2, 27–53 (1972).

    Article  MathSciNet  Google Scholar 

  28. K. Bärwinkel and S. Schippers, in Rarefied Gas Dynamics: Space-Related Studies E. P. Muntz, D. P. Weaver and D. H. Campbell, eds., 487–501, AIAA, Washington (1989).

    Google Scholar 

  29. J. C. Maxwell, Phil Trans. Royal Soc. 170, 231–256, Appendix (1879).

    Article  MATH  Google Scholar 

  30. S. Nocilla, in Rarefied Gas Dynamics, L. Talbot, ed., 169, Academic Press, New York (1961)

    Google Scholar 

  31. F. Hurlbut and F. S. Sherman, Phys. Fluids 11, 486–496 (1968).

    Article  Google Scholar 

  32. M. N. Kogan, Rarefied Gas Dynamics, Plenum Press, New York (1969).

    Google Scholar 

  33. I. Kuscer, J. Mozina and F. Krizanic, in Rarefied Gas Dynamics, Dini et al, eds., Vol. I, 97–108, Editrice Tecnico-Scientifica, Pisa (1974).

    Google Scholar 

  34. M. Knudsen, The Kinetic Theory of Gases, Methuen, London (1950).

    Google Scholar 

  35. T. G. Cowling, J. Phys. D. Appl Phys. 7, 781–785 (1974).

    Article  Google Scholar 

  36. M. M. R. Williams, J. Phys. D. Appl Phys. 4, 1315 (1971).

    Article  Google Scholar 

  37. C. Cercignani, in Rarefied Gas Dynamics, D. Dini et al eds.,vol. I, 75–96, Editrice Tecnico-Scientifica, Pisa (1974).

    Google Scholar 

  38. R. C. Blanchard, Paper No. ICAS 86-2.10.1, 15th ICAS Congress, London (September 1986).

    Google Scholar 

  39. J. S. Darrozès and J. P. Guiraud, C. R. A. S. (Paris) A262, 1368–1371.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Basel AG

About this chapter

Cite this chapter

Cercignani, C., Sattinger, D.H. (1998). Boltzmann Equation and Gas Surface Interaction. In: Scaling Limits and Models in Physical Processes. DMV Seminar, vol 28. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8810-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8810-3_1

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-7643-5985-0

  • Online ISBN: 978-3-0348-8810-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics