Skip to main content

A Tensile Model for the Interpretation of Microseismic Events near Underground Openings

  • Chapter
Seismicity Caused by Mines, Fluid Injections, Reservoirs, and Oil Extraction

Part of the book series: Pageoph Topical Volumes ((PTV))

Abstract

For small-scale microseismic events, the source sizes provided by shear models are unrealistically large when compared to visual observations of rock fractures near underground openings. A detailed analysis of the energy components in data from a mine-by experiment and from some mines showed that there is a depletion of S-wave energy for events close to the excavations, indicating that tensile cracking is the dominant mechanism in these microseismic events.

In the present study, a method is proposed to estimate the fracture size from microseismic measurements. The method assumes tensile cracking as the dominant fracture mechanism for brittle rocks under compressive loads and relates the fracture size to the measured microseismic energy. With the proposed method, more meaningful physical fracture sizes can be obtained and this is demonstrated by an example on data from an underground excavation with detailed, high-quality microseismic records.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bieniawski, Z. T. (1967), Mechanism of Brittle Fracture of Rock, Parts I, II and III, Int. J. Rock Mech. Min. Sci. and Geomech. Abstr. 4 (4), 395–430.

    Article  Google Scholar 

  • Boatwright, J., and Fletcher, J. B. (1984), The Partition of Radiated Energy between P and S Waves, Bull. Seismol. Soc. Am. 74, 361–376.

    Google Scholar 

  • Brace, W. F., Paulding, B., and Scholz, C. (1966), Dilatancy in the Frature of Crystalline Cracks, J. Geophys. Res. 71, 3939–3953.

    Article  Google Scholar 

  • Broek, D., Elementary Engineering Fracture Mechanics (Martinus Nijhoff Publishers, the Hague 1982).

    Book  Google Scholar 

  • Brune, J. N. (1970), Tectonic Stress and the Spectra of Seismic Shear Waves from Earthquakes, J. Geophys. Res. 75, 4997–5009.

    Article  Google Scholar 

  • Cundall, P. A., Potyondy, D. O., and Lee, C. A., Micromechanics-based models for fracture and breakout around the Mine-by tunnel. In Proc. Int. Conf: on Deep Geological Disposal of Radioactive Waste (eds. Martino, J. B., and Martin, C. D. ) (Canadian Nuclear Society, Toronto 1996) pp. 113–122.

    Google Scholar 

  • Diederichs, M. S. (1998), Rock mass stability and support design for deep excavations in hard rocks (in progress). Ph. D. Thesis, Dept. of Civil Eng. University of Waterloo, Waterloo, Ontario, Canada.

    Google Scholar 

  • Ecobichon, D., Hudyma, M., and Laplante, B. (1992), Understanding Geomechanics Problems through Microseismic Monitoring at Lac Shortt, Rock Mechanics and Strata Control Session, Proceedings of the 94th Annual General Meeting of the CIM, Montreal, April, pp. 1–13.

    Google Scholar 

  • Ewe, R. T., and Cook, N. G. W. (1990a), Deformation and Fracture around Cylindrical Openings in Rock—I, Observations and Analysis of Deformations, Int. J. Rock Mech. Min. Sci. and Geomech. Abstr. 27, 387–407.

    Article  Google Scholar 

  • Ewy, R. T., and Cook, N. G. W. (1990b), Deformation and Fracture around Cylindrical Openings in Rock—II, Initiation, Growth and Interaction of Fractures, Int. J. Rock Mech. Min. Sci. and Geomech. Abstr. 27, 407–427.

    Google Scholar 

  • Falls, S. D., and Young, R. P., Comparison of excavation disturbance around deep tunnels in hard rock using acoustic emission and ultrasonic velocity methods. In Proc. Excavation Disturbed Zone Workshop (eds. J. B. Marino, and Martin, C. D. ) (Canadian Nuclear Society, Toronto 1996) pp. 77–86.

    Google Scholar 

  • Feignier, B., and Young, R. P. (1992) Moment Tensor Inversion of Induced Microseismic Events: Evidence of Non-shear Failures in the -4 < M <-2 Moment Magnitude Range, Geophys. Res. Lett. 19 (14), 1503–1506.

    Article  Google Scholar 

  • Feignier, B., and Young, R. P. (1993), Source Mechanism Studies at the Underground Research Laboratory, Report to AECL, RP021AECL, Queen’s University, Kingston, Ontario.

    Google Scholar 

  • Glbowlcz, S. J., and Kijko, A., An Introduction to Missing Seismology (Academic Press, 1994).

    Google Scholar 

  • Gibowicz, S. J., Young, R. P., Talebi, S., and Rawlence, D. J. (1991), Source Parameters of Seismic Events at the Underground Research Laboratory in Manitoba, Canada: Scaling Relations for the Events with Moment Magnitude Smaller than - 2, Bull. Seismol. Soc. Am. 81, 1157–1182.

    Google Scholar 

  • Griffith, A. A. (1921), The Phenomena of Rupture and Flow in Solids, Phil. Trans. Roy. Soc. of London A221, 163–197.

    Article  Google Scholar 

  • Griffith, A. A. (1924), The Theory of Rupture, Proc. Ist Int. Conf. Applied Mech., Delft, 55–93.

    Google Scholar 

  • Hoek, E. (1965), Rock Fracture under Static Stress Conditions, CSIR Report MEG 383, National Mechanical Eng. Research Institute, Council for Scientific and Industrial Research, Pretoria, South Africa.

    Google Scholar 

  • Hoek, E. Brittle failure of rocks in rock mechanics in engineering practice. In Rock Mechanics in Engineering Practice (eds. Stagg, K. G., and Zienkiewicz, O. C. ) (John Willey and Sons 1968) pp. 99–124.

    Google Scholar 

  • Horii, H., and Nemat-Nasser, S. (1985), Compression-induced Microcrack Growth in Brittle Solids: Axial Splitting and Shear Failure, J. Geophys. Res. 90 (B4), 3105–3125.

    Article  Google Scholar 

  • Kaiser, P. K., and Maloney, S. M. (1997), Scaling Laws for the Design of Rock Support, Pure appl. geophys. 150, 415–434.

    Article  Google Scholar 

  • Lajtai, E. Z., Carter, B. J., and Ayari, M. L. (1990), Criteria for Brittle Fracture in Compression, Engin. Fract. Mech. 37 (1), 25–49.

    Google Scholar 

  • Lee, M. Y., and Haimson, B. C. (1993), Laboratory Study of Borehole Breakouts in Lac du Bonnet Granite: A Case of Extensile Failure Mechanism, Int. J. Rock Mech. Min. Sci. and Geomech. Abstr. 30 (7), 1039–1045.

    Article  Google Scholar 

  • Lockner, D. A., Byerlee, J. D., Kuksenko, V., Ponomarev, A., and Sidorin, A., Observation of quasi-static fault growth from acoustic emissions. In Fault Mechanics and Transport Properties of Rocks (eds. EVANS, B., and WONG, T. -f. ) (Academic Press 1992) pp. 3–31.

    Chapter  Google Scholar 

  • Madariaga, R. (1976), Dynamics of an Expending Circular Fault, Bull. Seismol. Soc. Am. 66, 639–666.

    Google Scholar 

  • Martin, C. D. (1997), Seventeenth Canadian Geotechnical Colloquium: The Effect of Cohesion Loss and Stress Path on Brittle Rock Strength, Canadian Geotech. J. 34 (5), 698–725.

    Google Scholar 

  • Martin, C. D., and Chandler, N. A. (1994), The Progressive Fracture of Lac du Bonnet Granite, Int. J. Rock Mech. Min. Sci. 31, 643–659.

    Article  Google Scholar 

  • Martin, C. D., Kaiser P. K., and McCreath, D. R. (1998), Hoek-Brown Parameters for Predicting the Depth of Brittle Failure around Tunnels, Canadian Geotechnical Journal, accepted for publication in 1999 Feb. issue.

    Google Scholar 

  • Martin, C. D., and Read, R. S. (1996), AECL’s Mine-by Experiment: A Test Tunnel in Brittle Rock,Proc. 2nd North American Rock Mech. Symposium (eds. Aubertin, Hassani and Mitri), 1, 13–24.

    Google Scholar 

  • Martin, C. D., Read, R. S., and Martino, J. B. (1997), Observation of Brittle Failure around a Circular Test Tunnel, Int. J. Rock Mech. Min. Sci. 34, 1065–1073.

    Article  Google Scholar 

  • McGarr, A., Some applications of seismic source mechanism studies to assessing underground hazard. In Rockburst and Seismicity in Mines (eds. Gay, N. C., and Wainwright, E. H. ), Symp. Ser. 6 (South Africa Inst. Min. Metal 1984) pp. 199–208.

    Google Scholar 

  • Mendecki, A. J., Quantitative seismology and rock mass stability. In Seismic Monitoring in Mines (ed. Mendecki, A. J. ) (Chapman and Hall, London 1997) Chapter 10, pp. 178–219.

    Chapter  Google Scholar 

  • Myer, L. R., Kemeny, J. M., Zheng, Z., Suarez, R., Ewy, R. T., and Cook, N. G. W. (1992), Extensive Cracking in Porous Rock under Differential Compressive Stress, Appl. Mech. Rev. 45, 263–280.

    Article  Google Scholar 

  • Olsson, O. L., and Winberg, A., Current understanding of extent and properties of the excavation disturbed zone and its dependence of excavation method, In Proc. Int. Conf. on Deep Geological Disposal of Radioactive Waste (eds. Martino, J. B., and Martin, C. D. ) (Canadian Nuclear Society, Toronto 1996) pp. 101–112.

    Google Scholar 

  • Ortlepp, W. D., Rock Fracture and Rockbursts—An Illustrative Study, Monograph Series M9 (The South African Institute of Mining and Metallurgy, Johannesburg, 1997).

    Google Scholar 

  • Randall, M. J. (1973), The Spectral Theory of Seismic Source, Bull. Seismol. Soc. Am. 63, 1133–1144.

    Google Scholar 

  • Read, R. S., and Martin, C. D. (1996), Technical Summary of AECL’s Mine-by Experiment, Phase 1: Excavation Response, AECL (AECL-11311, COG-95–171).

    Google Scholar 

  • Revalor, R., Josien, J. P., Besson, J. L., and Macron, A., Seismic and seismoacoustic experiments applied to the prediction of rockbursts in French coal mines. In Rockbursts and Seismicity in Mines (ed. C. Fairhurst) (Balkema, Rotterdam 1990) pp. 301–306.

    Google Scholar 

  • Sato, T. (1978), A Note on Body-wave Radiation from Expanding Tension Crack, Sci. Rep. Tohoku Univ., Ser. 5, Geophys. 25, 1–10.

    Google Scholar 

  • Scholz, C. H., The Mechanics of Earthquakes and Faulting (Cambridge University Press 1990).

    Google Scholar 

  • Stacey, T. R. (1981), A Simple Extension Strain Criterion for Fracture of Brittle Rock, Int. J. Rock Mech. Min. Sci. and Geomech. Abstr. 18, 469–474.

    Article  Google Scholar 

  • Talebi, S. (1993), Source Studies of Mine-induced Seismic Events over a Broad Magnitude Range (-4<M<4), CANMET, Report MRL 93–046 (CL).

    Google Scholar 

  • Talebi, S., and Young, R. P., Failure Mechanism of Crack Propagation Induced by Shaft Excavation at the Underground Research Laboratory. In Proc. Int. Conf. on Rock Mech. and Rock Physics at Great Depth (eds. Maury, V., and Fourmaintraux, D. ) (A. A. Balkema, Rotterdam 1989), 2, 719–726.

    Google Scholar 

  • Talebi, S., and Young, R. P. (1992), Microseismic Monitoring in Highly Stressed Granite: Relation between Shaft-wall Cracking and in situ Stress, Int. J. Rock Mech. Min. Sci. and Geomech. Abstr. 29, 25–34.

    Article  Google Scholar 

  • Truifu, C. I., Urbancic, T. I., and Young, R. P. (1995), Source Parameters of Mining-induced Seismic Event: An Evaluation of Homogeneous and Inhomogeneous Faulting Model for Assessing Damage Potential, Pure appl. geophys. 145 (1), 3–27.

    Article  Google Scholar 

  • Urbancic, T. J., Young, R. P., Bird, S., and Bawden, W. (1992), Microseismic source parameters and their use in characterizing rock mass behavior: Consideration from Strathcona mine, In Proc. AGM-CIM, May, 36–47.

    Google Scholar 

  • Wiles, T., Map 3-D User’s Manual (Mine Modeling Limited 1996).

    Google Scholar 

  • Wong, T. F. (1982), Micromechanics of Faulting in Westerly Granite, Int. J. Rock Mech. Min. Sci. and Geomech. Abstr. 19, 49–64.

    Google Scholar 

  • Young, R. P. (1993), Seismic Methods Applied to Rock Mechanics, ISRM News J. 1 (3), 4–18.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Basel AG

About this chapter

Cite this chapter

Cai, M., Kaiser, P.K., Martin, C.D. (1998). A Tensile Model for the Interpretation of Microseismic Events near Underground Openings. In: Talebi, S. (eds) Seismicity Caused by Mines, Fluid Injections, Reservoirs, and Oil Extraction. Pageoph Topical Volumes. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8804-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8804-2_5

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-7643-6048-1

  • Online ISBN: 978-3-0348-8804-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics