Free Surface Waves in a Wave Tank

  • Angela Pawell
Conference paper
Part of the International Series of Numerical Mathematics book series (ISNM, volume 124)


We consider the motion of an inviscid and incompressible fluid in an closed or semi-infinite basin with free surface waves. An intrinsic feature of the problem is the formation of waves by a periodic motion of one part of the boundary of the basin. Sharp corners of the rectangular domain and between the free surface and the side walls of the basin are critical regions of the solution. The correct formulation and solution of the problem in these regions is necessary for the simulation of the free surface waves in a bounded domain. We formulate compatibility relations for the dynamic contact lines as necessary conditions for the existence of a solution to the free boundary problem for a potential flow. We derive a formulation and numerical solution in a compact way so that natural compatibility conditions can be satisfied at the interface between the walls of the basin and the free surface.


Free Surface Surface Wave Contact Line Free Boundary Problem Absorb Boundary Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Beale, J. T.: The initial value problem for the Navier-Stokes equations with a free surface. Communications on Pure and Applied Mathematics, XXXIV:359–392, 1981.MathSciNetCrossRefGoogle Scholar
  2. [2]
    Beale, J. T.: Large-time regularity of viscous surface waves. Arch. for Rat. Mech. and Anal., 84:307–352, 1984.MathSciNetzbMATHGoogle Scholar
  3. [3]
    Cohen, G. (editor): Mathematical and numerical Aspects of wave propagation, Philadelphia, 1995. SIAM.Google Scholar
  4. [4]
    Kröner, D.: Absorbing boundary conditions for the linearized Euler equations in 2-d. Mathematics of Computation, 57(195):153–167, 1991.MathSciNetzbMATHCrossRefGoogle Scholar
  5. [5]
    Higdon, R. L.: Radiation boundary conditions for disipative waves SIAM J. Numer. Anal. 31(1):64–100, 1994.MathSciNetzbMATHCrossRefGoogle Scholar
  6. [6]
    Lions, P.-L.: Mathematical Topics in Fluid Mechanics, I incompressibe Models. Oxford Lecture Series in Mathematics and its Applications. Clarendon Press, Oxford, 1996.Google Scholar
  7. [7]
    Majda, A.: Compressible Fluid Flow and systems of Conservation Laws in Several Space Variables, volume 53 of Applied Mathematical Sciences. Springer Verlag, New York, Berlin, Heidelberg, Tokyo, 1984.zbMATHCrossRefGoogle Scholar
  8. [8]
    Miloh, T. (editor): Mathematical Approaches in Hydrodynamics, Philadelphia, 1991. SIAM.Google Scholar
  9. [9]
    Pawell, A.: The motion of an inviscid and incompressible fluid in a non-smooth domain. In Proceedings of the ICIAM 95, Applied Sciences — Especially Mechanics, ZAMM, 76(5):375–376. Akademie Verlag, Berlin, 1996.Google Scholar
  10. [10]
    Pawell, A.; Guenther, R. B.: A numerical solution to a free surface wave problem. Top. Methods in Nonlin. Anal., 6(2), 1996.Google Scholar
  11. [11]
    Romate, J. E.: Absorbing boundary conditions for free surface waves. Journal of computational Physics, 99:135–145, 1992.MathSciNetzbMATHCrossRefGoogle Scholar
  12. [12]
    Broeze, J.; Romate, J. E.: Absorbing boundary conditions for free surface waves, Simulations with a panel method. Journal of computational Physics, 99:146–158, 1992.MathSciNetzbMATHCrossRefGoogle Scholar
  13. [13]
    Shinbrot, M.: The initial value problem for surface waves under gravity, I. The simplest case. Indiana University Mathematics Journal, 25(3):281–300, 1976.MathSciNetzbMATHCrossRefGoogle Scholar
  14. [14]
    Reeder, J.; Shinbrot, M.: The initial value problem for surface waves under gravity, II. The simplest 3-dimensional case. Indiana University Mathematics Journal, 25(11):1049–1071, 1976.MathSciNetzbMATHCrossRefGoogle Scholar
  15. [15]
    Reeder, J.; Shinbrot, M.: The initial value problem for surface waves under gravity, III. Uniformly analytic initial domains. Journal of Mathematical Analysis and Applications, 67:340–391, 1979.MathSciNetzbMATHCrossRefGoogle Scholar
  16. [16]
    Socolowsky, J.: The solvability of a free boundary problem for the stationary Navier-Stokes equations with a dynamic contact line. Nonlinear Analysis, Theory, Methods & Applications, 21(10):763–784, 1993.MathSciNetzbMATHCrossRefGoogle Scholar
  17. [17]
    Socolowsky, J.: Existence and uniqueness of the solution to a free boundary-value problem with thermocapillary convection in an unbounded domain. Acta Applicandae Mathematicae, 37:181–194, 1994.MathSciNetzbMATHCrossRefGoogle Scholar
  18. [18]
    Solonnikov, V. A.: On some free boundary problems for the Navier-Stokes equations with moving contact points and lines. Math.Ann., 302(4):743–772, 1995.MathSciNetzbMATHCrossRefGoogle Scholar
  19. [19]
    Tanaka, N.; Tani, A.: Large-time existence of compressible viscous and heat-conductive surface waves. Sūrikaisekikenkyūsho Kōkyūroku, 824:138–150, 1993.MathSciNetGoogle Scholar
  20. [20]
    Tanaka, N.: Two-phase free boundary problem for viscous incompressible thermocapillary convection. Japan. J. Math., 21(l):l–42, 1995.Google Scholar
  21. [21]
    Tani, A.: Free boundary problems for the incompressible Euler equations. Sūrikaisekikenkyūsho Kōkyūroku, 862:237–248, 1994.MathSciNetGoogle Scholar
  22. [22]
    Radder, A. C.: An explicit Hamiltonian formulation of surface waves in water of infinite depth. J.Fluid.Mech, 237:435–455, 1992.MathSciNetzbMATHCrossRefGoogle Scholar
  23. [23]
    Wagata, L.: Absorbierende Randbedingungen für hyperbolische partielle Differentialgleichungen. PhD thesis, Ludwig-Maximilians-Universität München, März 1982.Google Scholar

Copyright information

© Springer Basel AG 1998

Authors and Affiliations

  • Angela Pawell
    • 1
  1. 1.Institut für MathematikBrandenburgische Technische Universität CottbusCottbusGermany

Personalised recommendations