Minimizing the Noise of an Aircraft During Landing Approach

  • Bernd Kugelmann
Conference paper
Part of the International Series of Numerical Mathematics book series (ISNM, volume 124)


In the past, aircraft performance optimization studies have been mainly associated with time or energy criteria, i. e. minimizing the time of climb, maximizing range, minimizing fuel consumption and so on. There have been fewer attempts to restrict or minimize the aircraft noise during takeoff and/or landing. This noise can be reduced not only by improving the noise characteristics of the engines and the aircraft, but also by developing suitable guidance and control systems. In this paper the choice of reasonable optimality criteria will be discussed in order to minimize the amount of noise inconvenience encountered by people living in the community surrounding the airport. The resulting optimal control problems will be solved for a special aircraft model by the indirect approach using the maximum principle. Several state as well as control constraints will be taken into account. The numerical algorithms used for the computation of the noise minimal trajectories will be presented and some results will be shown.


Optimal Control Problem Adjoint Variable Unconstrained Problem Aircraft Noise Flight Trajectory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Bulirsch, R.: Die Mehrzielmethode zur numerischen Lösung von nichtlinearen Randwertproblemen und Aufgaben der optimalen Steuerung, Report der Carl-Cranz Gesellschaft, 1971.Google Scholar
  2. [2]
    Bulirsch, R.; Montrone, F.; Pesch, H. J.: Abort Landing in the Presence of a Windshear as a Minimax Optimal Control Problem. Part 2: Multiple Shooting and Homotopy, Journal of Optimization Theory & Applications 70, 1991, pp. 223–254.MathSciNetzbMATHCrossRefGoogle Scholar
  3. [3]
    Hartl, R. F.; Sethi, S. P.; Vickson, R. G.: A Survey of the Maximum Principles for Optimal Control Problems with State Constraints, SIAM Review, Vol. 37, Nr. 2, June 1995, pp. 181–218.MathSciNetzbMATHCrossRefGoogle Scholar
  4. [4]
    Hiltmann, P.; Chudej, K.; Breitner, M. H.: Eine modifizierte Mehrzielmethode zur Lösung von Mehrpunkt-Randwertproblemen — Benutzeranleitung, Sonderforschungsbereich 255 der Deutschen Forschungsgemeinschaft, Report 14, München, 1993.Google Scholar
  5. [5]
    Jacob, H. G.: An Engineering Optimization Method with Application to STOL-Aircraft Approach and Landing Trajectories, NASA TN D-6978, September 1972.Google Scholar
  6. [6]
    Kugelmann, B.; Pesch, H. J.: New General Guidance Method in Constrained Optimal Control, Part 2: Application to Space Shuttle Guidance, Journal of Optimization Theory and Applications 67, S. 437–446, 1990.MathSciNetzbMATHCrossRefGoogle Scholar
  7. [7]
    Maurer, H.: Optimale Steuerprozesse mit Zustandsbeschränkungen, Habilitationsschrift, Naturwissenschaftlicher Fachbereich IV der Universität Würzburg, 1976.Google Scholar
  8. [8]
    Ohta, H.: Analysis of Minimum Noise Landing Approach Trajectory, J. Guidance, Vol. 5, No. 3, May–June 1982, pp. 263–269.zbMATHCrossRefGoogle Scholar
  9. [9]
    Pontrjagin, L. S.; Boltjanskij, V. G.; Gamkrelidze, R. V.; Misčenko, E. F.: Mathematische Theorie optimaler Prozesse, Oldenbourg, 1964.Google Scholar
  10. [10]
    Schmidt-Rheindt, E.: Minimierung der Lärmbelastung bei der Landung von Flugzeugen, Diploma Thesis, Department of Mathematics, University of Technology, February, 1997.Google Scholar
  11. [11]
    von Stryk, O.: Numerische Lösung optimaler Steuerungsprobleme: Diskretisierung, Parameteroptimierung und Berechnung der adjungierten Variablen, Fortschritt-Berichte VDI, Reihe 8, Meß-, Steuerungs-und Regelungstechnik, Nr. 441, VDI-Verlag, Düsseldorf, 1995.Google Scholar

Copyright information

© Springer Basel AG 1998

Authors and Affiliations

  • Bernd Kugelmann
    • 1
  1. 1.Technische Universität MünchenMünchenGermany

Personalised recommendations