Advertisement

Time Invariant Global Stabilization of a Mobile Robot

  • Harald Abeßer
  • Michael Katzschmann
  • Joachim Steigenberger
Conference paper
Part of the International Series of Numerical Mathematics book series (ISNM, volume 124)

Abstract

In this paper we present time invariant controllers which globally asymptotically stabilize a simple mobile robot to an equilibrium posture. For both kinematics and dynamics the construction follows a strategy which in fact allows for a family of controllers parameterized by the initial state and ensures smoothness of each motion.

Keywords

Mobile Robot Kinematical Model Nonholonomic System Feedback Stabilization Smooth System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Astolfi, A.: A unifying approach to the asymptotic stabilization of nonholonomic systems via discontinuous feedback, Report 94-01, Autom. Control Lab. ETH, Zürich.Google Scholar
  2. [2]
    Brockett, R. W.: Asymptotic stability and feedback stabilization, in: Brockett, R. W.; Millmann, R. S.; Sussmann, H. J. (Eds.): Differential Geometric Control Theory, (Birkhäuser, 1983) 181–208.Google Scholar
  3. [3]
    Canudas de Wit, C.; Berghuis, H.; Nijmeijer, H.: Practical stabilization of nonlinear systems in chained form, Preprint, Twente University, 1993.Google Scholar
  4. [4]
    Canudas de Wit, C.; Khennouf, H.; Samson, C.; Sordalen, O. J.: Nonlinear control design for mobile robots, in: F. Yuan, Zheng, (Eds.): Recent Trends in Mobile Robots, World Scientific Series in Robotics and Automated Systems, Vol. 11, 121–156.Google Scholar
  5. [5]
    Oelen, W.; Berghuis, H.; Nijmeijer, H.; Canudas de Wit, C.: Implementation of a hybrid stabilizing controller on a mobile robot with two degrees of freedom, IEEE Conf. on Robotics and Automation, San Diego, California, May, 1994, 1196–1201.Google Scholar
  6. [6]
    Pomet, J.-B.: Explicit design of time-varying stabilizing control laws for a class of controllable systems without drift, Systems and Control Letters 18 (1992), 147–158.MathSciNetzbMATHCrossRefGoogle Scholar
  7. [7]
    Steigenberger, J.; Abeßer, H.; Katzschmann, M.: On mobile robots and their feedback stabilization, Part 1: Kinematics, Preprint No. M 7/95, TU Ilmenau, Fak. Mathematik u. Naturwissenschaften, 1995.Google Scholar
  8. [8]
    Steigenberger, J.; Abeßer, H.; Katzschmann, M.: On mobile robots and their feedback stabilization, Part 2: Dynamics, Preprint No. M 22/95, TU Ilmenau, Fak. Mathematik u. Naturwissenschaften, 1995.Google Scholar

Copyright information

© Springer Basel AG 1998

Authors and Affiliations

  • Harald Abeßer
  • Michael Katzschmann
  • Joachim Steigenberger
    • 1
  1. 1.Institute of MathematicsTechnical University of IlmenauGermany

Personalised recommendations