Advertisement

SQP Methods and their Application to Numerical Optimal Control

  • Alex Barclay
  • Philip E. Gill
  • J. Ben Rosen
Part of the International Series of Numerical Mathematics book series (ISNM, volume 124)

Abstract

In recent years, sequential quadratic programming (SQP) methods have been developed that can reliably solve constrained optimization problems with many hundreds of variables and constraints. These methods require remarkably few evaluations of the problem functions and can be shown to converge to a solution under very mild conditions on the problem.

Some practical and theoretical aspects of applying SQP methods to optimal control problems are discussed, including the influence of the problem discretization and the zero/nonzero structure of the problem derivatives. We conclude with some recent approaches that tailor the SQP method to the control problem.

Keywords

Optimal Control Problem Multiple Shooting Sequential Quadratic Programming Nonlinear Constraint Single Shooting 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Ascher, U. M.; Mattheij, R. M. M.; Russell, R. D.: Numerical Solution of Boundary Value Problems for Ordinary Differential Equations. Classics in Applied Mathematics, 13. Society for Industrial and Applied Mathematics (SIAM) Publications, Philadelphia, PA, 1995. ISBN 0-89871-354-4.Google Scholar
  2. [2]
    Beltracchi, J. T.; Gabriele, G. A.: An investigation of using a RQP based method to calculate parameter sensitivity derivatives. In: Recent advances in multidis-ciplinary analysis and optimization. NASA conference publication 3031, Part 2, proceedings of a symposium held in Hampton, Virginia, September 28–30, 1988, 1988.Google Scholar
  3. [3]
    Betts, J. T.: Issues in the direct transcription of optimal control problems to sparse nonlinear programs. In: Bulirsch, R.; Kraft, D. (editors): Control Applications of Optimization, volume 115 of Internat. Ser. Numer. Math., pages 3-17, Basel, 1994. Birkhäuser.Google Scholar
  4. [4]
    Betts, J. T.; Frank, P. D.: A sparse nonlinear optimization algorithm. J. Optim. Theory and Applics., 82, 519–541, 1994.MathSciNetzbMATHCrossRefGoogle Scholar
  5. [5]
    Betts, J. T.; Huffman, W. P.: The application of sparse nonlinear programming to trajectory optimization. J. of Guidance, Control, and Dynamics, 14, 338–348, 1991.CrossRefGoogle Scholar
  6. [6]
    Brenan, K. E.: Differential-algebraic equations issues in the direct transcription of path constrained optimal control problems. Ann. Numer. Math., 1(1-4), 247–263, 1994.MathSciNetzbMATHGoogle Scholar
  7. [7]
    Buchauer, O.; Hiltmann, P.; Kiehl, M.: Sensitivity analysis of initial value problems with application to shooting techniques. Numer. Math., 67, 151–159, 1994.MathSciNetzbMATHCrossRefGoogle Scholar
  8. [8]
    Bulirsch, R.; Nerz, E.; Pesch, H. J.; von Stryk, O.: Combining direct and indirect methods in optimal control: Range maximization of a hang glider. In: Bulirsch, R.; Miele, A.; Stoer, J.; Well, K. H. (editors): Calculus of Variations, Optimal Control Theory and Numerical Methods., volume 111 of Internat. Ser. Numer. Math., pages 273–288, Basel, 1993. Birkhäuser.Google Scholar
  9. [9]
    Büskens, C.; Maurer, H.: Sensitivity analysis and real-time control of nonlinear optimal control systems via nonlinear programming. In this volumeGoogle Scholar
  10. [10]
    Dennis, J. E. Jr.; Heinkenschloss, M.; Vicente, L.N.: Trust-region interior SQP methods for a class of nonlinear programming problems. Technical Report 94-45 (revised 1996), Dept of Mathematical Sciences, Rice University, Houston, TX, 1994.Google Scholar
  11. [11]
    Dickmanns, E.D.; Well, K. H.: Approximate solution of optimal control problems using third-order Hermite polynomial functions. In: Proc. 6th Technical Conference on Optimization Techniques. Berlin, Heidelberg, New York, London, Paris and Tokyo, 1975. Springer Verlag.Google Scholar
  12. [12]
    Eldersveld, S. K.: Large-scale sequential quadratic programming algorithms. PhD thesis, Department of Operations Research, Stanford University, Stanford, CA, 1991.Google Scholar
  13. [13]
    Eldersveld, S. K.; Gill, P. E.: Preconditioned limited-storage quasi-Newton methods for large-scale constrained optimization. Presented at the Fifth SIAM Conference on Optimization, Victoria, British Columbia, May 20–22, 1996.Google Scholar
  14. [14]
    Fletcher, R.: An1 penalty method for nonlinear constraints. In: Boggs, P. T.; Byrd, R.H.; Schnabel, R. B. (editors): Numerical Optimization 1984, pages 26-40, Philadelphia, 1985. SIAM.Google Scholar
  15. [15]
    Gill, P. E.; Jay, L. O.; Petzold, L.: An SQP method for the optimization of dynamical systems. To appear.Google Scholar
  16. [16]
    Gill, P. E.; Murray, W.; Saunders, M. A.: SNOPT: An SQP algorithm for large-scale constrained optimization. Numerical Analysis Report 97-1, Department of Mathematics, University of California, San Diego, La Jolla, CA, 1997.Google Scholar
  17. [17]
    Gill, P. E.; Murray, W.; Saunders, M. A.; Wright, M. H.: Sparse matrix methods in optimization. SIAM J. on Scientific and Statistical Computing, 5, 562–589, 1984.MathSciNetzbMATHCrossRefGoogle Scholar
  18. [18]
    Gill, P. E.; Murray, W.; Wright, M. H.: Practical Optimization. Academic Press, London and New York, 1981. ISBN 0-12-283952-8.zbMATHGoogle Scholar
  19. [19]
    Gritsis, D. M.; Pantelides, C. C.; Sargent, R. W. H.: Optimal control of systems described by index two differential-algebraic equations. SIAM J. Sci. Comput., 16, 1349–1366, 1995.MathSciNetzbMATHCrossRefGoogle Scholar
  20. [20]
    Hairer, E.; Nørsett, S. P.; Wanner, G.: Solving Ordinary Differential Equations I. Springer Verlag, New York, Berlin and Heidelberg, second revised edition, 1993. ISBN 0387-56670-8.Google Scholar
  21. [21]
    Hargraves, C. R.; Paris, S. W.: Direct trajectory optimization using nonlinear programming and collocation. J. of Guidance, Control, and Dynamics, 10, 338–348, 1987.zbMATHCrossRefGoogle Scholar
  22. [22]
    Kiehl, M.: Parallel multiple shooting for the solution of initial value problems. Parallel Comput., 20, 275–295, 1994.MathSciNetzbMATHGoogle Scholar
  23. [23]
    Kraft, D.: On converting optimal control problems into nonlinear programming problems. In: Schittkowski, K. (editor): Computational Mathematical Programming, NATO ASI Series F: Computer and Systems Sciences 15, pages 261–280. Springer Verlag, Berlin and Heidelberg, 1985.CrossRefGoogle Scholar
  24. [24]
    Lamour, R.: A well-posed shooting method for transferable DAEs. Numer. Math., 59, 815–829, 1991.MathSciNetzbMATHCrossRefGoogle Scholar
  25. [25]
    Leitmann, G.: The Calculus of Variations and Optimal Control. Mathematical Concepts and Methods in Science and Engineering, 24. Plenum Press, New York and London, 1981. ISBN 0-306-40707-8.Google Scholar
  26. [26]
    Maly, T.; Petzold, L. R.: Numerical methods and software for sensitivity analysis of differential-algebraic systems. to appear in Applied Numerical Mathematics, 1996.Google Scholar
  27. [27]
    Pantelides, C. C.; Sargent, R. W. H.; Vassiliadis, V. S.: Optimal control of multistage systems described by high-index differential-algebraic equations. Internat. Ser. Numer. Math., 115, 177–191, 1994.MathSciNetGoogle Scholar
  28. [28]
    Pesch, H. J.: Real-time computation of feedback controls for constrained optimal control problems. Optimal Control Appl. Methods, 10, 129–171, 1989.MathSciNetzbMATHCrossRefGoogle Scholar
  29. [29]
    Petzold, L.; Rosen, J. B.; Gill, P. E.; Jay, L.O.; Park, K.: Numerical optimal control of parabolic PDEs using DASOPT. In: Biegler, L. T.; Coleman, T. F.; Conn, A. R.; Santosa, F. N. (editors): Large Scale Optimization with Applications, Part II: Optimal Design and Control, volume 93 of IMA Volumes in Mathematics and its Applications. Springer Verlag, Berlin, Heidelberg and New York, 1997.Google Scholar
  30. [30]
    Schittkowski, K.: NLPQL: A Fortran subroutine for solving constrained nonlinear programming problems. Ann. Oper. Res., 11, 485–500, 1985/1986.MathSciNetGoogle Scholar
  31. [31]
    Schultz, V. H.: Reduced SQP methods for large-scale optimal control problems in DAE with application to path planning problems for satellite mounted robots. PhD thesis, University of Heidelberg, 1996.Google Scholar
  32. [32]
    Schulz, V. H.; Bock, H.-G.; Steinbach, M. C.: Exploiting invariants in the numerical solution of multipoint boundary value problems for DAE. submitted to SIAM J. Sci. Comput., 1996.Google Scholar
  33. [33]
    Tanartkit, P.; Biegler, L. T.: Stable decomposition for dynamic optimization. Ind. Eng. Chem. Res., pages 1253–1266, 1995.Google Scholar
  34. [34]
    Tjoa, I.-B.; Biegler, L. T.: A reduced SQP strategy for errors-in-variables estimation. Comput. Chem. Eng., 16, 523–533, 1992.CrossRefGoogle Scholar
  35. [35]
    vonStryk, O.: Numerical solution of optimal control problems by direct collocation. In: Bulirsch, R.; Miele, A.; Stoer, J.; Well, K. H. (editors): Control Applications of Optimization, volume 111 of Internat. Ser. Numer. Math., pages 129–143, Basel, 1993. Birkhäuser.Google Scholar
  36. [36]
    von Stryk O.; Bulirsch, R.: Direct and indirect methods for trajectory optimization. Ann. Oper. Res., 37(1-4), 357–373, 1992.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 1998

Authors and Affiliations

  • Alex Barclay
    • 1
  • Philip E. Gill
    • 1
  • J. Ben Rosen
    • 2
  1. 1.Department of MathematicsUniversity of CaliforniaSan Diego, La JollaUSA
  2. 2.Department of Computer Science and EngineeringUniversity of CaliforniaSan Diego, La JollaUSA

Personalised recommendations