Sensitivity Analysis and Real-Time Control of Nonlinear Optimal Control Systems via Nonlinear Programming Methods

  • Christof Büskens
  • Helmut Maurer
Part of the International Series of Numerical Mathematics book series (ISNM, volume 124)


Parametric nonlinear optimal control problems subject to control and state constraints are studied. Based on recent stability results we propose a robust nonlinear programming method to compute the sensitivity derivatives of optimal solutions. Realtime control approximations of perturbed optimal solutions are obtained by evaluating a first order Taylor expansion of the perturbed solution. The numerical methods are illustrated by two examples. We consider the Rayleigh problem from electrical engineering and the maximum range flight of a hang glider.


Optimal Control Problem Sequential Quadratic Programming Adjoint Variable Nominal Parameter Order Taylor Expansion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Beltracchi, T. J.; Gabriele, G. A.: An investigation of using an RQP based method to calculate parameter sensitivity derivatives, in “Recent Advances in Multidisciplinary Analysis and Optimization”, NASA Conference Publication 3031, Part 2, Proceedings of a symposium held in Hampton, USA, September 28–30, 1988.Google Scholar
  2. [2]
    Beltracchi, T. J.; Nguyen, H. N.: Experience with post optimality parameter sensitivity analysis in FONSIZE, American Institute of Aeronautics and Astronautics, Report AIAA-92-4749-CP, pp. 496-506, 1992.Google Scholar
  3. [3]
    Betts, J. T.; Huffmann, W. P.: Path constrained trajectory optimization using sparse sequential quadratic programming, Applied Mathematics and Statistics Group, Boeing Computer Services, Seattle, USA, 1991.Google Scholar
  4. [4]
    Bock, H. G.; Krämer-Eis, P.: An efficient algorithm for approximate computation of feedback control laws in nonlinear processes, ZAMM, 61 (1981), T330–T332.zbMATHGoogle Scholar
  5. [5]
    Büskens, C.: Direkte Optimierungsmethoden zur numerischen Berechnung optimaler Steuerungen, Diploma thesis, Institut für Numerische Mathematik, Universität Münster, Münster, Germany, 1993.Google Scholar
  6. [6]
    Dontchev, A. L.; Hager, W. W.: Lipschitz stability in nonlinear control and optimization, SIAM J. Control and Optimization, 31 (1993), pp. 569–603.MathSciNetzbMATHCrossRefGoogle Scholar
  7. [7]
    Dontchev, A. L.; Hager, W. W.; Poore, A. B.; and Yang, B.: Optimality, stability and convergence in nonlinear control, Applied Mathematics and Optimization, 31 (1995), pp. 297–326.MathSciNetzbMATHCrossRefGoogle Scholar
  8. [8]
    Evtushenko, Y. G.: Numerical Optimization Techniques, Translation Series in Mathematics and Engineering, Optimisation Software Inc., Publications Division, New York, 1985.CrossRefGoogle Scholar
  9. [9]
    Fiacco, A. V.: Introduction to Sensitivity and Stability Analysis in Nonlinear Programming, Mathematics in Science and Engineering, Vol. 165, Academic Press, New York, 1983.Google Scholar
  10. [10]
    Hallmann, W.: Sensitivity analysis for trajectory optimization, 28th Aerospace Sciences Meeting, AIAA 90-0471, Reno, USA, January 8–11, 1990.Google Scholar
  11. [11]
    Hallmann, W.: Optimal scaling techniques for the nonlinear programming problem, 5th AIAA/NASA/USAF/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Panama City Beach, USA, September 7–9, 1994.Google Scholar
  12. [12]
    Jacobson, D. H.; Mayne, D. Q.: Differential Dynamic Programming, American Elsevier Publishing Company Inc., New York 1970.zbMATHGoogle Scholar
  13. [13]
    Krämer-Eis, P.: Ein Mehrzielverfahren zur numerischen Berechnung optimaler Feedback-Steuerung en bei beschränkten nichtlinearen Steuerungsproblemen, Bonner Mathematische Schriften, 164, 1985.Google Scholar
  14. [14]
    Malanowski, K.: Stability and sensitivity of solutions to nonlinear optimal control problems, Applied Mathematics and Optimization, 32 (1995), pp. 111–141.MathSciNetzbMATHCrossRefGoogle Scholar
  15. [15]
    Malanowski, K.; Maurer, H.: Sensitivity analysis for parametric control problems with control-state constraints, Computational Optimization and Applications, 5 (1996), pp. 253–283.MathSciNetzbMATHCrossRefGoogle Scholar
  16. [16]
    Malanowski, K.; Maurer, H.: Sensitivity analysis for state constrained control problems, Angewandte Mathematik und Informatik, Universität Münster, Preprint No. 21/96-N, 1996.Google Scholar
  17. [17]
    Maurer H.; Augustin, D.: Second order sufficient conditions and sensitivity analysis for the controlled Rayleigh problem, to appear in Proceedings of the 4th Conference on Parametric Optimization and Related Topics, Enschede, June 6–9, 1995.Google Scholar
  18. [18]
    Maurer, H.; Pesch, H. J.: Solution differentiability for parametric nonlinear control problems, SIAM Journal on Control and Optimization, 32 (1994), pp. 1542–1554.MathSciNetzbMATHCrossRefGoogle Scholar
  19. [19]
    Maurer, H.; Pesch, H. J.: Solution differentiability for parametric nonlinear control problems with control-state constraints, Control and Cybernetics, 23 (1994), pp. 201–227.MathSciNetzbMATHGoogle Scholar
  20. [20]
    Nerz, E.: Optimale Steuerung eines Hängegleiters, Munich University of Technology, Department of Mathematics, Diploma Thesis, 1990.Google Scholar
  21. [21]
    Pesch, H. J.: Real-time computation of feedback controls for constrained optimal control problems, Part 1: Neighbouring extremals, Optimal Control Applications & Methods, 10 (1989), pp. 129–145.MathSciNetzbMATHCrossRefGoogle Scholar
  22. [22]
    Pesch, H.J.: Real-time computation of feedback controls for constrained optimal control problems, Part 2: A correction method based on multiple shooting, Optimal Control Applications & Methods, 10 (1989), pp. 147–171.MathSciNetzbMATHCrossRefGoogle Scholar
  23. [23]
    vonStryk, O.: Numerische Lösung optimaler Steuerungsprobleme: Diskretisierung, Parameteroptimierung und Berechnung der adjungierten Variablen. Fortschritt-Berichte VDI, Reihe 8, Nr. 441, VDI Verlag, Germany (1995).Google Scholar
  24. [24]
    Teo, K. L.; Goh C. J.; Wong, K. H.: A Unified Computational Approach to Optimal Control Problems, Longman Scientific and Technical, New York, 1991.zbMATHGoogle Scholar
  25. [25]
    Tun T.; Dillon, T. S.: Extensions of the differential dynamic programming method to include systems with state dependent control constraints and state variable inequality constraints, Journal of Applied Science and Engineering A, 3, (1978), pp. 171–192.Google Scholar

Copyright information

© Springer Basel AG 1998

Authors and Affiliations

  • Christof Büskens
    • 1
  • Helmut Maurer
    • 1
  1. 1.Institut für Numerische MathematikWestfälische Wilhelms Universität MünsterMünsterGermany

Personalised recommendations