Strong Observability of Time-Dependent Linear Systems

  • Dirk Liebscher
Conference paper
Part of the International Series of Numerical Mathematics book series (ISNM, volume 124)


There are considered time-dependent linear systems of the form with state xIR n , control (input) uIR m and output yIR p . We derive local characterizations of observability of (A, C) and strong observability of (A, B, C). These criteria are pointwise rank conditions on a certain matrix, which is explicitly built up from the first n — 2 derivatives of A and B and the first n — 1 derivatives of C. The results generalize well-known theorems for time-invariant systems.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. Klamka. Controllability of dynamical systems. Kluwer, Dordrecht, 1991.zbMATHGoogle Scholar
  2. [2]
    W. Kratz. Quadratic Functionals in Variational Analysis and Control Theory. Akademie Verlag, Berlin, 1995.zbMATHGoogle Scholar
  3. [3]
    H.E. Meadows L.M. Silverman. Controllability and observability in time-variable linear systems. SIAM J. on Control, 5:64–73, 1967.MathSciNetzbMATHCrossRefGoogle Scholar
  4. [4]
    R.E. Kaiman. Mathematical description of linear dynamical systems. SIAM J. on Control, 1:152–192, 1963.Google Scholar
  5. [5]
    W. Kratz. Characterization of strong observability. Linear Algebra Appl., 221:31–40, 1995.MathSciNetzbMATHCrossRefGoogle Scholar
  6. [6]
    D. Liebscher. Zeitabhängige lineare Systeme: Lokale Rangkriterien und Rayleigh-Prinzip. PhD thesis, Universität Ulm, 1996.Google Scholar
  7. [7]
    D. Liebscher W. Kratz. A local characterization of observability. submitted to Linear Algebra Appl.Google Scholar

Copyright information

© Springer Basel AG 1998

Authors and Affiliations

  • Dirk Liebscher
    • 1
  1. 1.Abteilung Mathematik VUniversität UlmUlmGermany

Personalised recommendations