Existence Principles and the Theory of Extremal Problems

  • Vladimir Tikhomirov
Conference paper
Part of the International Series of Numerical Mathematics book series (ISNM, volume 124)


Extremal problems arising in mathematics, in the natural sciences, or in practical activities are usually stated initially without formulas, using the terminology of the field in which they arise.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Ioffe, A. D.; Tikhomirov, V. M.: Some remarks on variational principles. Matem-aticheskie Zametki, 1997, N 1.Google Scholar
  2. [2]
    Dontchev, A. L.: The Graves Theorem Revisted. Journ. of Conv. Anal., 1996, N1.Google Scholar
  3. [3]
    Borwein, J. M.; Preiss, D.: A smooth variational principle. Trans. Amer. Math. Soc., 303, 1987.Google Scholar
  4. [4]
    DeVille, R.: Nouveaux principles variationnelles. Sem. Inst. d’Analyse, 1990/91, N 21.Google Scholar
  5. [5]
    Ekeland, I.: Nonconvex Variational Problems. Bull. AMS, 1979.Google Scholar
  6. [6]
    Ioffe, A. D.; Tikhomirov, V. M.: Theory of Extremal Problems. North-Holland, 1979.Google Scholar
  7. [7]
    Burzev, S. V.: Existence theorems of implicit function in the conditions of ex-tremum. Mat. sbornik, 185, 1994.Google Scholar
  8. [8]
    Ioffe, A. D.; Tikhomirov, V. M.: Extension of Variational Problems. Trudy Moscow Math. Obsh. 18, 1968.Google Scholar
  9. [9]
    Gusseinov, F.: Extension of Multidimensional Variational Problems. Doctoral Dissertation. Baku, 1988.Google Scholar

Copyright information

© Springer Basel AG 1998

Authors and Affiliations

  • Vladimir Tikhomirov
    • 1
  1. 1.Faculty of MathematicsMoscow State UniversityMoscowRussia

Personalised recommendations