Advertisement

Multiobjective Optimal Control Problems

  • Christiane Tammer
Part of the International Series of Numerical Mathematics book series (ISNM, volume 124)

Abstract

From an Ekeland-type variational principle for vector optimization problems we derive an e-minimum principle in the sense of Pontrjagin for suboptimal controls using classical results for differential equations.

Keywords

Optimal Control Problem Variational Principle Vector Optimization Vector Optimization Problem Multiobjective Optimization Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Aubin, J. P.; Ekeland, I.: Applied Nonlinear Analysis. Wiley, New York, 1984.zbMATHGoogle Scholar
  2. [2]
    Benker, H.; Kossert, S.: Remarks on quadratic optimal control problems in Hilbert spaces. Zeitschr. Analysis und ihre Anwendungen 1(3), 1982, 13–21.MathSciNetzbMATHGoogle Scholar
  3. [3]
    Breckner, W. W.: Derived sets for weak multiobjective optimization problems with state and control variables (to appear), 1996.Google Scholar
  4. [4]
    Dentscheva, D.; Helbig, S.: On variational principles in vector optimization, Lecture on the 4th Workshop Multicriteria Decision, Holzhau, Germany, 1994.Google Scholar
  5. [5]
    Ekeland, I.: On the variational principle. J. Math. Anal. Appl. 47, 1974, 324–353.MathSciNetzbMATHCrossRefGoogle Scholar
  6. [6]
    Ekeland, I.: Nonconvex minimization problems. Bull. Amer. Mathem. Society 1(3), 1979, 443–474.MathSciNetzbMATHCrossRefGoogle Scholar
  7. [7]
    Gerth (Tammer), C.; Weidner, P.: Nonconvex separation theorems and some applications in vector optimization. J. Optim. Theory Appl. 67(2), 1990, 297–320.MathSciNetzbMATHCrossRefGoogle Scholar
  8. [8]
    Gorochowik, B. B.: About multiobjective optimization problems (in Russian). AN Soviet Union (6), 1972.Google Scholar
  9. [9]
    Gorochowik, B. B.; Kirillowa, F. M.: About scalarization of vector optimization problems (in Russian). Docl. AN Soviet Union (19), No. 7, 1975, 588–591.Google Scholar
  10. [10]
    Gorochowik, B. B.: Conditions for weakly efficient elements in multiobjective optimization (in Russian). Minsk, IN-T Matem. AN Soviet Union, Preprint, 1976.Google Scholar
  11. [11]
    Henkel, E.-C.; Tammer, C.: ε-variational inequalities in partially ordered spaces. Optimization 36, 1996, 105–118.MathSciNetzbMATHCrossRefGoogle Scholar
  12. [12]
    Isac, G.: A variant of Ekeland’s principle for Pareto ε-efficiency. In prep, 1994.Google Scholar
  13. [13]
    Khanh, P. Q.: On Caristi-Kirk’s theorem and Ekeland’s variational principle for Pareto extrema. Inst. of Mathem., Polish Acad. Sciences, Preprint 357, 1986.Google Scholar
  14. [14]
    Klötzler, R.: Multiobjective dynamic programming. Math. Operationsforschung, Statist., Ser. Opt. 9(3), 1978, 423–426.zbMATHCrossRefGoogle Scholar
  15. [15]
    Klötzler, R.: On a general conception of duality in optimal control. Lecture Notes in Math. 703, 1979, 183–196.Google Scholar
  16. [16]
    Loridan, P.: ε-solutions in vector minimization problems. Journ. Optimization Theory Applications 43(2), 1984, 265–276.MathSciNetzbMATHCrossRefGoogle Scholar
  17. [17]
    Nemeth, A. B.: A Nonconvex Vector Minimization Proble. Nonlin. Anal. Theory, Methods and Applications 10(7), 1986, 669–678.MathSciNetzbMATHCrossRefGoogle Scholar
  18. [18]
    Pallu de 1a Barriere: Cours d’automatique theorique. Dunod, 1965.Google Scholar
  19. [19]
    Salukvadze, M. E.: Vector optimization problems in control theory. Tiblisi, 1975.Google Scholar
  20. [20]
    Tammer, C.: A generalization of Ekeland’s variational principle. Optimization 25, 1992, 129–141.MathSciNetzbMATHCrossRefGoogle Scholar
  21. [21]
    Tammer, C.: Existence results and necessary conditions for ε-efficient elements. In: Brosowski, Ester, Helbig, Nehse (Eds): Multicriteria Decision. Lang Verlag Frankfurt Main Bern, 1993, 97–110.Google Scholar
  22. [22]
    Tammer, C.: Necessary conditions for approximately efficient solutions of vector approximation. Proc. 2nd Conf.Approximation and Optimization, Havana, 1993.Google Scholar
  23. [23]
    Tammer, C.: A variational principle and applications for vectorial control approximation problems. To appear: Math. Journ. Univ. Bacau (Romania), 1994.Google Scholar

Copyright information

© Springer Basel AG 1998

Authors and Affiliations

  • Christiane Tammer
    • 1
  1. 1.Department of Mathematics and InformaticsMartin-Luther-University Halle-WittenbergHalleGermany

Personalised recommendations