Advertisement

Existence Results for Some Nonconvex Optimization Problems Governed by Nonlinear Processes

  • Tomáš Roubíček
Conference paper
Part of the International Series of Numerical Mathematics book series (ISNM, volume 124)

Abstract

Optimal control problems with nonlinear equations usually do not possess optimal solutions. Nevertheless, if the cost functional is uniformly concave with respect to the state, the solution may exist. Using the Balder’s technique based on a Young-measure relaxation, Bauer’s extremal principle and investigation of extreme Young measures, the existence is demonstrated here for the case of nonlinear ordinary and partial differential equations.

Keywords

Optimal Control Problem Extreme Point Multivalued Mapping Young Measure Pontryagin Maximum Principle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Balder, E. J.: New existence results for optimal controls in the absence of convexity: the importance of extremality. SIAM J. Control Optim. 32 (1994), 890–916.MathSciNetzbMATHCrossRefGoogle Scholar
  2. [2]
    Bauer, H.: Minimalstellen von Funktionen und Extremalpunkte. Archiv d. Math. 9 (1958), 389–393, 11 (1960), 200-205.zbMATHCrossRefGoogle Scholar
  3. [3]
    Berliocchi, H.; Lasry, J.-M.: Intégrandes normales et mesures paramétrées en calcul des variations. Bull. Soc. Math. France 101 (1973), 129–184.MathSciNetzbMATHGoogle Scholar
  4. [4]
    Castaing, C.; Valadier, M.: Convex Analysis and Measurable Multifunctions. Lecture Notes in Math. 580, Springer, Berlin, 1977.Google Scholar
  5. [5]
    Cellina, A.; Colombo, G.: On a classical problem of the calculus of variations without convexity assumptions. Annales Inst. H. Poincaré, Anal. Nonlin. 7(1990), 97–106.MathSciNetzbMATHGoogle Scholar
  6. [6]
    Cesari, L.:An existence theorem without convexity conditions. SIAM J. Control 12 (1974), 319–331.Google Scholar
  7. [7]
    Cesari, L.: Optimization: Theory and Applications. Springer, New York, 1983.zbMATHCrossRefGoogle Scholar
  8. [8]
    Gabasov, R.; Kirillova, F.: Qualitative Theory of Optimal Processes. Nauka, Moscow, 1971.Google Scholar
  9. [9]
    Grisvard, P.: Elliptic problems in nonsmooth domains. Pitman, Boston, 1985.zbMATHGoogle Scholar
  10. [10]
    Macki, J.; Strauss, A.: Introduction to Optimal Control Theory. Springer, New York, 1982.zbMATHCrossRefGoogle Scholar
  11. [11]
    Mariconda, C.: On a parametric problem of the calculus of variations without convexity assumptions. J. Math. Anal. Appl. 170 (1992), 291–297.MathSciNetzbMATHCrossRefGoogle Scholar
  12. [12]
    Neustadt, L. W.: The existence of optimal controls in the absence of convexity conditions. J. Math. Anal. Appl. 7 (1963), 110–117.MathSciNetzbMATHCrossRefGoogle Scholar
  13. [13]
    Olech, C.: Integrals of set-valued functions and linear optimal control problems. Clloque sur la Théorie Math. du Contrôle Optimal, C.B.R.M., Vander Louvain, 1970, pp. 109–125.Google Scholar
  14. [14]
    Raymond, J.-P.: Existence theorems in optimal control theory without convexity assumptions. J. Optim. Theory Appl. 67 (1990), 109–132.MathSciNetzbMATHCrossRefGoogle Scholar
  15. [15]
    Raymond, J.-P.: Existence theorems without convexity assumptions for optimal control problems governed by parabolic and elliptic systems. Appl. Math. Optim. 26 (1992), 39–62.MathSciNetzbMATHCrossRefGoogle Scholar
  16. [16]
    Raymond, J.-P.: Existence and uniqueness results for minimization problems with non-convex functionals. J. Optim. Theory Appl. 82 (1994), 571–592.MathSciNetzbMATHCrossRefGoogle Scholar
  17. [17]
    Roubíček, T.: Relaxation in Optimization Theory and Variational Calculus. W. de Gruyter, Berlin, 1997.zbMATHCrossRefGoogle Scholar
  18. [18]
    Roubíček, T.; Schmidt, W. H.: Existence of solutions to nonconvex optimal control problems governed by nonlinear Fredholm integral equations. (submitted)Google Scholar
  19. [19]
    Schmidt, W.H.: Maximum principles for processes governed by integral equations in Banach spaces as sufficient optimality conditions. Beiträge zur Analysis 17 (1981), 85–93.Google Scholar
  20. [20]
    Warga, J.: Optimal Control of Differential and Functional Equations. Academic Press, New York, 1972.zbMATHGoogle Scholar
  21. [21]
    Young, L. C.: Generalized curves and the existence of an attained absolute minimum in the calculus of variations. Comptes Rendus de la Société des Sciences et des Lettres de Varsovie, Classe III 30 (1937), 212–234.zbMATHGoogle Scholar

Copyright information

© Springer Basel AG 1998

Authors and Affiliations

  • Tomáš Roubíček
    • 1
  1. 1.Institute of Information Theory and Automation, Academy of SciencesMathematical Institute, Charles UniversityCzech Republic

Personalised recommendations