Advertisement

On the Convexification of Optimal Control Problems of Flight Dynamics

  • Leonhard Bittner
Conference paper
Part of the International Series of Numerical Mathematics book series (ISNM, volume 124)

Abstract

The control structure of the differential equations of a typical flight dynamical control problem is studied and methods for defining a relaxed problem with the aid of a least number of additional control parameters are presented. The usefulness of the relaxed problems for proving the existence of optimal solutions and calculating approximately optimal solutions is explained in detail.

Keywords

Optimal Control Problem Original Problem Current Point Flight Path Angle Terminal Constraint 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Bittner, L.: Zur Existenz von Optimallösungen für das Problem des Wiedereintritts in die Atmosphäre und das Problem des Einschwenkens in eine Umlaufbahn. Rep. Nr. 20 des Sonderforschungsbereichs (SFB) 255 der DFG, 1994.Google Scholar
  2. [2]
    Bittner, L.: Zur Existenz einer optimalen Lösung des Brachistochroneproblems mit Tangentialwinkelbeschränkungen. Rep. Nr. 29 des SFB 255 der DFG, 1995.Google Scholar
  3. [3]
    Bittner, L.: Zur Konvexifizierung von Optimalsteuerproblemen. Rep. Nr. 33 des SFB 255 der DFG, 1996.Google Scholar
  4. [4]
    Bulirsch, R.; Chudej, K.: Combined optimization of trajectory and stage separation of a hypersonic two-stage space vehicle. Z. Flugwiss. Weltraumforschung 19 (1995) 55–60.Google Scholar
  5. [5]
    Butzek, S.; Schmidt, W.: Konstruktion von Näherungslösungen für Steuerprobleme mit Hilfe von Lösungen relaxierter Probleme. Rep. Nr. 26 des SFB 255 der DFG, 1996.Google Scholar
  6. [6]
    Dunford, N.; Schwartz, J. T.: Linear Operators I. Interscience Publishers, New York, 1958.zbMATHGoogle Scholar
  7. [7]
    Lee, E. B.; Marcus, L.: Foundations of Optimal Control Theory. John Wiley Inc., New York, 1970.Google Scholar
  8. [8]
    Macky, P.; Strauss, A.: Introduction to Optimal Control Theory. Springer, Berlin, 1988.Google Scholar
  9. [9]
    Sachs, G.; Mehlhorn, R.; Dinkelmann, N.: Efficient convexification of flight path optimization problems. This volume.Google Scholar

Copyright information

© Springer Basel AG 1998

Authors and Affiliations

  • Leonhard Bittner
    • 1
  1. 1.Institut für Mathematik und InformatikErnst-Moritz-Arndt-Universität GreifswaldGermany

Personalised recommendations