Skip to main content

On the Reduction of G-invariant Polynomials for Arbitrary Permutation Groups G

  • Conference paper
Symbolic Rewriting Techniques

Part of the book series: Progress in Computer Science and Applied Logic ((PCS,volume 15))

Abstract

Let R be a commutative ring with 1, let R[X 1…,X n ] be the polynomial ring in X 1,…, X n over R, let G be a permutation group acting on the indeterminates and let σ1, …, σ n be the elementary symmetric polynomials.

This paper presents a detailed analysis and implementation issues of an algorithm for computing a representation of an arbitrary G-invariant polynomial in R[X 1…,X n ] as a finite R1, …, σ n ]-linear combination of G-invariant polynomials with a total degree of at most max{n,n(n - 1)/2}. In addition, we show how the degree bounds can be improved for a certain class of permutation groups.

The results of this note are based on the author’s Ph. D. thesis written under the supervision of Proof. Loos(Tübingen) and Prof. Weispfenning(Passau). The author would like to thank Prof. Smith(Güttingen) and N. Killius (Güttingen) for discussion and support. Special thanks to the anonymous referees for their comments and remarks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Becker, T., Weispfenning, V., in Cooperation with Kredel, H. (1993). Gröbner Bases: A Computational Approach to Commutative Algebra. Springer, New York.

    MATH  Google Scholar 

  2. Campbell, H. E. A., Hughes, L., Pollack, R. D. (1990). Vector Invariants of Symmetric Groups. Canad. Math. Bull. Vol 33(4), 391–397.

    Article  MathSciNet  MATH  Google Scholar 

  3. Campbell, H. E. A., Hughes, I., Pollack, R. D. (1991). Rings of Invariants and p-Syslow Subgroups. Canad. Math. Bull. Vol 34(1), 42–47.

    Article  MathSciNet  MATH  Google Scholar 

  4. Collins, G. E., Mignotte, M., Winkler, F. (1982). Arithmetic in Basic Algebraic Domains. In: Buchberber, B., Collins, G. E., Loos, R. (eds.), Computer Algebra, Symbolic and Algebraic Computation. Springer, New York, 189–220.

    Google Scholar 

  5. Garsia, A., Stanton, D. (1984). Group Actions on Stanley-Reisner Rings and Invariants of Permutation Groups. Adv. Math. 51, 107–201.

    Article  MathSciNet  MATH  Google Scholar 

  6. Göbel, M. (1995). Computing Bases for Permutation-Invariant Polynomials. Journal of Symbolic Computation 19, 285–291.

    Article  MathSciNet  MATH  Google Scholar 

  7. Killius, N. (1996). Some Modular Invariant Theory of Finite Groups with Particular Emphasis on the Cyclic Group. Diplomarbeit. Universität Göttingen.

    Google Scholar 

  8. Kredel, H. (1990). MAS: Modula-2 Algebra System. In: Gerdt, V. P., Rostovtsev, V. A., and Shirkov, D. V. (eds.), IV International Conference on Computer Algebra in Physical Research. World Scientific Publishing Co., Singapore, 31–34.

    Google Scholar 

  9. Lauer, E. (1976). Algorithms for Symmetrical Polynomials. In: Jenks, R. D., (ed.), ACM Symposium on Symbolic and Algebraic Computation. ACM Press, New York, 242–247.

    Chapter  Google Scholar 

  10. Lauer, E. (1976). Algorithmen für symmetrische Polynome. Diplomarbeit, Universität Kaiserslautern.

    Google Scholar 

  11. Noether, E. (1916). Der Endlichkeitssatz der Invarianten endlicher Gruppen. Mathe. Ann. 77, 89–92.

    Article  Google Scholar 

  12. Reiner, V. (1995). On Göbel’s Bound for Invariants of Permutation Groups. Arch. Math. 65, 475–480.

    Article  MathSciNet  MATH  Google Scholar 

  13. Smith, L. (1995). Polynomial Invariants of Finite Groups. A. K. Peters, Ltd., Wellesley.

    MATH  Google Scholar 

  14. Sturmfels, B. (1993). Algorithms in Invariant Theory. Springer, Vienna [W46] Weyl, H. (1946). The Classical Groups. Princeton Univ. Press, Princeton.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Basel AG

About this paper

Cite this paper

Göbel, M. (1998). On the Reduction of G-invariant Polynomials for Arbitrary Permutation Groups G . In: Bronstein, M., Weispfenning, V., Grabmeier, J. (eds) Symbolic Rewriting Techniques. Progress in Computer Science and Applied Logic, vol 15. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8800-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8800-4_4

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9779-2

  • Online ISBN: 978-3-0348-8800-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics