Skip to main content

Gotthold Eisenstein

16 April 1823–11 October 1852

  • Chapter


The early development and untimely death of a genius is a well-known theme in general (“Whom the gods love …”), and in musical biography in particular, with Mozart and Schubert as outstanding examples. But three geniuses among the nineteenth century mathematicians, whose lives were cut off all too soon, make Mozart’s death at close to 37 years, and even Schubert’s at hardly less than 32 years, almost seem to have come at a reasonably mature age. The mathematicians are Evariste Galois — who lost his life at 20 in an absurd duel, Niels Henrik Abel — who succumbed to tuberculosis at age 26, and finally Gotthold Eisenstein, whose frail body held out exactly 1000 days longer than Abel’s, before giving in to the same disease.


  • Elliptic Function
  • Algebraic Number Theory
  • Jacobian Variety
  • Fermat Curve
  • Power Residue

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-0348-8787-8_7
  • Chapter length: 6 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
USD   44.99
Price excludes VAT (USA)
  • ISBN: 978-3-0348-8787-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   59.99
Price excludes VAT (USA)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adler, A., Eisenstein and the Jacobian varieties of Fermat curves, Rocky Mountain Journal of Mathematics 27 (1997), 1–60.

    MathSciNet  MATH  CrossRef  Google Scholar 

  2. Biermann, K.-R., Eine Selbstbiographie von G. Eisenstein, Mitt. Math. Ges. DDR, Heft 3-4 (1976), 150–154.

    Google Scholar 

  3. Eisenstein, G., Mathematische Werke, 2 vols., Chelsea, 1975.

    Google Scholar 

  4. Klein, F., Vorlesungen über die Entwicklung der Mathematik im 19. Jahrhundert, Teil I, Springer-Verlag, Berlin, 1926.

    Google Scholar 

  5. Roerdansz, A., Ein Freiheits-Martyrium, Gefangene Berliner auf dem Transport nach Spandau am Morgen des 19. März 1848, Protocollarische Aussagen und eigene Berichte der 91 Betheiligten, als Beitrag zur Geschichte des Berliner Märzkampfes gesammelt und herausgegeben von Adalbert Roerdansz, Berlin, 1848.

    Google Scholar 

  6. Weil, A., Elliptic functions according to Eisenstein and Kronecker, Ergeb. Math. 88, Springer-Verlag, Berlin, 1976.

    Google Scholar 

  7. Weil, A., On Eisenstein’s Copy of the Disquisitiones, in: Coates, J., Greenberg, R., Mazur, B., Satake, I. (eds.), Algebraic Number Theory — in honor of Kenkichi Iwasawa, Advanced Studies in Pure Mathematics 17, Academic Press, Princeton, 1989, 463–469.

    Google Scholar 

Download references


Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1998 Springer Basel AG

About this chapter

Cite this chapter

Schappacher, N. (1998). Gotthold Eisenstein. In: Begehr, H., Koch, H., Kramer, J., Schappacher, N., Thiele, EJ. (eds) Mathematics in Berlin. Birkhäuser, Basel.

Download citation

  • DOI:

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-7643-5943-0

  • Online ISBN: 978-3-0348-8787-8

  • eBook Packages: Springer Book Archive