Skip to main content

Regulation of Eosinophil Migration

  • Chapter
Molecular Biology of the Lung

Abstract

Eosinophils were first recognized about 100 years ago as cells with granules that display an affinity for eosin and other acidic dyes [1]. It was soon realized that the presence of eosinophils in tissue was associated with helminthic parasite infection, allergy, asthma and certain cancers. It is now generally believed that eosinophils are important effector cells in the beneficial host defence inflammatory response against helminthic parasites, and yet they can also play a major role in the excessive and inappropriate inflammatory responses seen in allergy and asthma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ehrlich P, Lazarus A, Meyers W (eds) (1900) Normal and pathological. Cambridge University Press, Cambridge, 148

    Google Scholar 

  2. Wardlaw AJ, Moqbel R, Kay AB, Kay AB (eds) (1997) Allergy and allergic diseases, Blackwell Science vol 10, Eosinophils and the allergic inflammatory response. Oxford, 171-197

    Google Scholar 

  3. Weller PF (1997) Human eosinophils. J Allergy Clin Immunol 100: 283–287

    Article  PubMed  CAS  Google Scholar 

  4. Butterworth AE (1984) Cell-mediated damage to helminths. Adv Parasitol 23: 143–235

    Article  PubMed  CAS  Google Scholar 

  5. Frigas E, Loegering DA, Gleich GJ (1980) Cytotoxic effects of the guinea pig eosinophil. Major basic protein on tracheal epithelium. Lab Invest 42: 35–43

    PubMed  CAS  Google Scholar 

  6. Tai PC, Spry CJ, Peterson C, Venge P, Olsson I (1984) Monoclonal antibodies distinguished between storage and secreted forms of eosinophil cationic protein. Nature 309: 182–184

    Article  PubMed  CAS  Google Scholar 

  7. Wardlaw AJ, Dunnette S, Gleich GJ, Collins JV, Kay AB (1988) Eosinophils and mast cells in bronchoalveolar lavage in subjects with mild asthma. Relationship to bronchial hyper-reactivity. Am Rev Respir Dis 137: 62–69

    Article  PubMed  CAS  Google Scholar 

  8. Kay AB, Stechschulte DJ, Austen KF (1971) An eosinophil leukocyte chemotactic factor of anaphylaxis. J Exp Med 133: 602–619

    Article  PubMed  CAS  Google Scholar 

  9. Sehmi R, Cromwell O, Taylor GW, Kay AB (1991) Identification of guinea pig eosinophil chemotactic factor of anaphylaxis as leukotriene B4 and 8(S)-dihydroxy-5,9,11,13 (Z,E, Z,E)-eicosatetraenoic acid. J Immunol 147: 2276–2283

    PubMed  CAS  Google Scholar 

  10. Baggiolini M, Dewald B, Moser B (1997) Human cytokines: An update. Annu Rev Immunol 15: 675–705

    Article  PubMed  CAS  Google Scholar 

  11. Coulin F, Power CA, Alouani S, Peitsch MC, Schroeder J, Moshizuki M, Clark-Lewis I, Wells TNC (1997) Characterisation of macrophage inflammatory protein-5/human CC cytokine-2, a member of the macrophage-inflammatory-protein family of chemokines. Eur J Biochem 248: 507–515

    Article  PubMed  CAS  Google Scholar 

  12. Daugherty BL, Siciliano SJ, DeMartino J, Malkowitz L, Sirontino A, Springer MS (1996) Cloning, expression and characterization of the human eosinophil eotaxin receptor. J Exp Med 183: 2349–2354

    Article  PubMed  CAS  Google Scholar 

  13. Ponath PD, Qin S, Post TW, Wang J, Wu L, Gerard NP, Newman W, Gerard C, Mackay CR (1996) Molecular cloning and characterization of a human eotaxin receptor expressed selectively on eosinophils. J Exp Med 183: 2437–2448

    Article  PubMed  CAS  Google Scholar 

  14. Kitaura M, Nakajima T, Imai T, Harada S, Combadiere C, Tiffany HL, Murphy PM, Yoshie O (1996) Molecular cloning of human eotaxin, an eosinophil-selective CC chemokine, and identification of a specific eosinophil eotaxin receptor, CC chemokine receptor 3. J Biol Chem 271: 7725–7730

    Article  PubMed  CAS  Google Scholar 

  15. Keiner GS, Kennedy J, Bacon KB, Kleyensteuber S, Largaespada DA, Jenkins NA, Copeland NA, Bazan JF, Moore KW, Schall TJ et al. (1994) Lymphotactin: A cytokine that represents a new class of chemokine. Science 266: 1395–1399

    Article  Google Scholar 

  16. Bazan JF, Bacon KB, Hardiman G, Wang W, Greaves DR, Zlotnik A, Schall TJ (1997) A new class of membrane-bound chemokine with a CX3C motif. Nature 385: 640–644

    Article  PubMed  CAS  Google Scholar 

  17. Heath H, Qin S, Wu L, LaRosa G, Kassam N, Ponath PD, Mackay CR (1997) Chemokine receptor usage by human eosinophils. The importance of CCR3 demonstrated using an antagonistic monoclonal antibody. J Clin Invest 99: 178–184

    Article  PubMed  CAS  Google Scholar 

  18. Yoshimura T, Matsushima K, Tanaka S, Robinson EA, Appella E, Oppenheim JJ, Leonard EJ (1987) Purification of a human monocyte-derived neutrophil chemotactic factor that has peptide sequence similarity to other host defense cytokines. Proc Nat Acad Sci USA 84: 9233–9237

    Article  PubMed  CAS  Google Scholar 

  19. Matsushima K, Larsen CG, Dubois GC, Oppenheim JJ (1989) Purification and characterization of a novel monocyte chemotactic and activating factor produced by a human myelomonocytic cell line. J Exp Med 169: 1485–1490

    Article  PubMed  CAS  Google Scholar 

  20. Schall TJ, Bacon K, Toy KI, Goeddel DV (1990) Selective attraction of monocytes and T lymphocytes of the memory phenotype by cytokine RANTES. Nature 347: 669–671

    Article  PubMed  CAS  Google Scholar 

  21. Kameyoshi Y, Dorschner A, Mallet AI, Christophers E, Schröder J (1992) Cytokine RANTES released by thrombin-stimulated platetets is a potent attractant for human eosinophils. J Exp Med 176: 587–592

    Article  PubMed  CAS  Google Scholar 

  22. Griffiths-Johnson DA, Collins PD, Rossi AG, Jose PJ, Williams TJ (1993) The chemokine, Eotaxin, activates guinea-pig eosinophils in vitro, and causes their accumulation into the lung in vivo. Biochem Biophys Res Commun 197: 1167–1172

    Article  PubMed  CAS  Google Scholar 

  23. Jose PJ, Griffiths-Johnson DA, Collins PD, Walsh DT, Moqbel R, Totty NF, Truong O, Hsuan JJ, Williams TJ (1994) Eotaxin: A potent eosinophil chemoattractant cytokine detected in a guinea-pig model of allergic airways inflammation. J Exp Med 179: 881–887

    Article  PubMed  CAS  Google Scholar 

  24. Jose PJ, Adcock IM, Griffiths-Johnson DA, Berkman N, Wells TNC, Williams TJ, Power CA (1994) Eotaxin: Cloning of an eosinophil chemoattractant cytokine and increased mRNA expression in allergen-challenged guinea-pig lungs. Biochem Biophys Res Commun 205: 788–794

    Article  PubMed  CAS  Google Scholar 

  25. Rothenberg ME, Luster AD, Lilly CM, Drazen JM, Leder P (1995) Constitutive and allergen-induced expression of eotaxin mRNA in the guinea pig lung. J Exp Med 181: 1211–1216

    Article  PubMed  CAS  Google Scholar 

  26. Humbles AA, Conroy DM, Marleau S, Rankin SM, Palframan RT, Proudfoot AEI, Wells TNC, Dechun L, Jeffery PK, Griffiths-Johnson DA et al. (1997) Kinetics of eotaxin generation and its relationship to eosinophil accumulation in allergic airways disease: analysis in a guinea pig model in vivo. J Exp Med 186: 601–612

    Article  PubMed  CAS  Google Scholar 

  27. Rothenberg ME, Luster AD, Leder P (1995) Murine eotaxin: An eosinophil chemoattractant inducible in endothelial cells and in interleukin 4-induced tumor suppression. Proc Natl Acad Sci USA 92: 8960–8964

    Article  PubMed  CAS  Google Scholar 

  28. Gonzalo J, Jia G, Aguirre V, Friend D, Coyle AJ, Jenkins NA, Lin G, Katz H, Lichtman A, Copeland N et al. (1996) Mouse eotaxin expression parallels eosinophil accumulation during lung allergic inflammation but it is not restricted to a Th2-type response. Immunity 4: 1–14

    Article  CAS  Google Scholar 

  29. Ponath PD, Qin S, Ringler DJ, Clark-Lewis I, Wang J, Kassam N, Smith H, Shi X, Gonzalo J, Newman W et al. (1996) Cloning of the human eosinophil chemoattractant, eotaxin. Expression, receptor binding and functional properties suggest a mechanism for the selective recruitment of eosinophils. J Clin Invest 97: 604–612

    Article  PubMed  CAS  Google Scholar 

  30. Garcia-Zepeda EA, Rothenberg ME, Ownbey RT, Celestin J, Leder P, Luster AD (1996) Human eotaxin is a specific chemoattractant for eosinophil cells and provides a new mechanism to explain tissue eosinophilia. Nature Med 2: 449–456

    Article  PubMed  CAS  Google Scholar 

  31. Williams CMM, Newton DJ, Wilson SA, Williams TJ, Coleman JW, Flanagan BF (1998) Conserved structure and tissue expression of rat eotaxin. Immunogenetics 47: 178–180

    Article  PubMed  CAS  Google Scholar 

  32. Forssmann U, Uguccioni M, Loetscher P, Dahinden CA, Langen H, Thelen M, Baggiolini M (1997) Eotaxin-2, a novel CC chemokine that is selective for the chemokine receptor CCR3, and acts like eotaxin on human eosinophil and basophil leukocytes. J Exp Med 185: 2171–2176

    Article  PubMed  CAS  Google Scholar 

  33. Gonzalo J, Lloyd CM, Kremer L, Finger E, Martinez-A C, Siegelman MH, Cybulsky MI, Gutierrez-Ramos J (1996) Eosinophil recruitment to the lung in a murine model of allergic inflammation. The role of T cells, chemokines and adhesion receptors. J Clin Invest 98: 2332–2345

    Article  PubMed  CAS  Google Scholar 

  34. Lukacs NW, Strieter RM, Warmington K, Lincoln P, Chensue SW, Kunkel SL (1997) Differential recruitment of leukocyte populations and alteration of airway hyperreactivity by C-C family chemokines in allergic airway inflammation. J Immunol 158: 4398–4404

    PubMed  CAS  Google Scholar 

  35. Stafford S, Li H, Forsythe PA, Ryan M, Bravo R, Alam R (1997) Monocyte chemotactic protein-3 (MCP-3)/fibroblast-induced cytokine (FIC) in eosinophilic inflammation of the airways and the inhibitory effects of an anti-MCP-3/FIC antibody. J Immunol 158: 4953–4960

    PubMed  CAS  Google Scholar 

  36. Jia G, Gonzalo J, Lloyd C, Kremer L, Lu L, Martinez-A C, Wershil BK, Gutierrez-Ramos J (1996) Distinct expression and function of the novel mouse chemokine monocyte chemotactic protein-5 in lung allergic inflammation. J Exp Med 184: 1939–1951

    Article  PubMed  CAS  Google Scholar 

  37. Sarafi MN, Garcia-Zepeda EA, MacLean JA, Charo IF, Luster AD (1997) Murine monocyte chemoattractant protein (MCP)-5: a novel CC chemokine that is a structural and functional homologue of human MCP-1. J Exp Med 185: 99–109

    Article  PubMed  CAS  Google Scholar 

  38. Teixeira MM, Wells TNC, Lukacs NW, Proudfoot AEI, Kunkel SL, Williams TJ, Hellewell PG (1997) Chemokine-induced eosinophil recruitment. Evidence of a role for endogenous eotaxin in an in vivo allergy model in mouse skin. J Clin Invest 100: 1657–1666

    Article  PubMed  CAS  Google Scholar 

  39. Rothenberg ME, MacLean JA, Pearlman E, Luster AD, Leder P (1997) Targeted disruption of the chemokine eotaxin partially reduces antigen-induced tissue eosinophilia. J Exp Med 4: 785–790

    Article  Google Scholar 

  40. Corrigan CJ, Kay AB (1992) T cells and eosinophils in the pathogenesis of asthma. Immunol Today 13: 501–507

    Article  PubMed  CAS  Google Scholar 

  41. Kishimoto TK, Jutila MA, Butcher EC (1990) Identification of a human peripheral lymph node homing receptor: a rapidly down-regulated adhesion molecule. Proc Natl Acad Sci USA 87: 2244–2248

    Article  PubMed  CAS  Google Scholar 

  42. Sanz M, Ponath PD, Mackay CR et al. (1998) Human eotaxin induces α4 and β2 integrin-dependent eosinophil accumulation in rat skin in vivo: delayed generation of eotaxin in response to IL-4. J Immunol 160: 3566–3576

    Google Scholar 

  43. Collins PD, Marleau S, Griffiths-Johnson DA, Jose PJ, Williams TJ (1995) Co-operation between interleukin-5 and the chemokine eotaxin to induce eosinophil accumulation in vivo. JExp Med 182: 1169–1174

    Article  CAS  Google Scholar 

  44. MacLean JA, Ownbey R, Luster AD (1996) T cell-dependent regulation of eotaxin in antigen-induced pulmonary eosinophilia. J Exp Med 184: 1461–1469

    Article  PubMed  CAS  Google Scholar 

  45. Alam R, York J, Boyars M, Stafford S, Grant JA, Lee J, Forsythe P, Sim T, Ida N (1996) Increased MCP-1, RANTES, and MIP-1a in bronchoalveolar lavage fluid of allergic asthmatic patients. Am J Respir Crit Care Med 153: 1398–1404

    PubMed  CAS  Google Scholar 

  46. Venge J, Lampinen M, Håkansson L, Rak S, Venge P (1996) Identification of IL-5 and RANTES as the major eosinophil chemoattractants in the asthmatic lung. J Allergy Clin Immunol 97: 1110–1115

    Article  PubMed  CAS  Google Scholar 

  47. Montefort S, Gratziou C, Goulding D, Polosa R, Haskard DO, Howarth PH, Holgate ST, Carroll MP (1994) Bronchial biopsy evidence for leukocyte infiltration and upregulation of leukocyte-endothelial cell adhesion molecules 6 hours after local allergen challenge of sensitized asthmatic airways. J Clin Invest 93: 1411–1421

    Article  PubMed  CAS  Google Scholar 

  48. Teran LM, Noso N, Carroll M, Davies DE, Holgate S, Schroder J (1996) Eosinophil recruitment following allergen challenge is associated with the release of the chemokine RANTES into asthmatic airways. J Immunol 157: 1806–1812

    PubMed  CAS  Google Scholar 

  49. Ying S, Robinson DS, Meng Q, Rottman J, Kennedy R, Ringler DJ, Mackay CR, Daugherty BL, Springer MS, Durham SR et al. (1997) Enhanced expression of eotaxin and CCR3 mRNA and protein in atopic asthma. Association with airway hyperresponsiveness and predominant co-localization of eotaxin mRNA to bronchial epithelial and endothelial cells. Eur J Immunol 21: 3507–3516

    Article  Google Scholar 

  50. Mattoli S, Stacey MA, Sun G, Bellini A, Marini M (1997) Eotaxin expression and eosinophilic inflammation in asthma. Biochem Biophys Res Commun 236: 299–301

    Article  PubMed  CAS  Google Scholar 

  51. Lamkhioued B, Renzi PM, Younes A, Garcia-Zepeda EA, Allakhverdi Z, Ghaffar O, Rothenberg MD, Luster AD, Hamid QA (1997) Increased expression of eotaxin in bronchoalveolar lavage and airways of asthmatics contributes to the chemotaxis of eosinophils to the site of inflammation. J Clin Immunol 159: 4593–4601

    CAS  Google Scholar 

  52. Carlos TM, Harlan JM (1994) Leukocyte-endothelial adhesion molecules. Blood 84: 2068–2101

    PubMed  CAS  Google Scholar 

  53. Albelda SM, Smith CW, Ward PA (1994) Adhesion molecules in inflammatory injury. FASEB J 8: 504–512

    PubMed  CAS  Google Scholar 

  54. Kansas GS (1996) Selectins and their ligands: current concepts and controversies. Blood 88: 3259–3287

    PubMed  CAS  Google Scholar 

  55. Broide DH, Sullivan S, Gifford T, Sriramarao P (1998) Inhibition of pulmonary eosinophilia in P-selectin-and ICAM-1-deficient mice. Am J Respir Cell Mol Biol 18: 218–225

    PubMed  CAS  Google Scholar 

  56. Blease K, Seybold J, Adcock IM, Hellewell PG, Burke-Gaffney A (1998) Interleukin-4 and lipopolysaccharide synergise to induce vascular cell adhesion molecule-1 expression in human lung microvascular endothelial cells. Am J Respir Cell Mol Biol 18: 620–630

    PubMed  CAS  Google Scholar 

  57. Montefort S, Holgate ST, Howarth PH (1993) Leukocyte-endothelial adhesion molecules and their role in bronchial asthma and allergic rhinitis. Eur Respir J 6: 1044–1054

    PubMed  CAS  Google Scholar 

  58. Kitayama J, Fuhlbrigge RC, Puri KD, Springer TA (1997) P-selectin, L-selectin, and α4 integrin have distinct roles in eosinophil tethering and arrest on vascular endothelial cells under physiological flow conditions. J Immunol 159: 3929–3939

    PubMed  CAS  Google Scholar 

  59. Symon FA, Lawrence MB, Williamson ML, Walsh GM, Watson SR, Wardlaw AJ (1996) Functional and structural characterization of the eosinophil P-selectin ligand. J Immunol 157: 1711–1719

    PubMed  CAS  Google Scholar 

  60. Sriramarao P, von Andrian UH, Butcher EC, Bourdon MA, Broide DH (1994) L-selectin and very late antigen-4 integrin promote eosinophil rolling at physiological shear rates in vivo. J Immunol 153: 4238–4246

    PubMed  CAS  Google Scholar 

  61. Malik AB, Lo SK (1996) Vascular endothelial adhesion molecules and tissue inflammation. Pharmacol Rev 48: 213–229

    PubMed  CAS  Google Scholar 

  62. Kuijpers TW, Mul FPJ, Blom M, Kovach NL, Gaeta FCA, Toliefson V, Elices MJ, Harlan JM (1993) Freezing adhesion molecules in a state of high-avidity binding blocks eosinophil migration. J Exp Med 178: 279–284

    Article  PubMed  CAS  Google Scholar 

  63. van de Stolpe A, van der Saag PT (1996) Intercellular adhesion molecule-1. J Mol Med 74: 13–33

    Article  PubMed  Google Scholar 

  64. Wegner CD, Gundel RH, Reilly P, Haynes N, Letts LG, Rothlein R (1990) Intercellular adhesion molecule-1 (ICAM-1) in the pathogenesis of asthma. Science 247: 456–459

    Article  PubMed  CAS  Google Scholar 

  65. Bradding P, Feather IH, Howarth PH, Mueller R, Roberts JA, Britten K, Bews JPA, Hunt TC, Okayama Y, Heusser CH et al. (1992) Interleukin 4 is localised to and released by human mast cells. J Exp Med 176: 1381–6

    Article  PubMed  CAS  Google Scholar 

  66. Thornhill MH, Haskard DO (1990) IL-4 regulates endothelial cell activation by IL-1, tumor necrosis factor, or IFN-gamma. J Immunol 145: 865–872

    PubMed  CAS  Google Scholar 

  67. Synder B, Lugli S, Feng N, Etter R, Lutz A, Ryffel B, Sugamura K, Wunderli-Allenspach H, Moser R (1996) Interleukin-4 (IL-4) and IL-13 bind to a shared heterodimeric complex on endothelial cells mediating vascular cell adhesion molecule-1 induction in the absence of the common gamma chain. Blood 87: 4286–4295

    Google Scholar 

  68. Bochner BS, Klunk DA, Sterbinsky SA, Coffman RL, Schleimer RP (1995) IL-13 selectively induces vascular cell adhesion molecule-1 expression in human endothelial cells. J Immunol 154: 799–803

    PubMed  CAS  Google Scholar 

  69. Eisner J, Hochstetter R, Kimmig D, Kapp A (1996) Human eotaxin represents a potent activator of the respiratory burst of human eosinophils. Eur J Immunol 26: 1919–1925

    Article  Google Scholar 

  70. Tenscher K, Metzner B, Schöpf E, Norgauer J, Czech W (1996) Recombinant human eotaxin induces oxygen radical production, Ca2+-mobilization, actin reorganization, and CD11b upregulation in human eosinophils via a Pertussis toxin-sensitive heterotrimeric guanine nucleotide-binding protein. Blood 88: 3195–3199

    PubMed  CAS  Google Scholar 

  71. Weber C, Kitayama J, Springer TA (1996) Differential regulation of β1 and β2 integrin avidity by chemoattractants in eosinophils. Proc Natl Acad Sci USA 93: 10939–10944

    Article  PubMed  CAS  Google Scholar 

  72. Tenscher K, Metzner B, Hofmann C, Schopf E, Norgauer J (1997) The monocyte chemotactic protein-4 induces oxygen radical production, actin reorganization, and CD11b upregulation via a pertussin toxin-sensitive G-protein in human eosinophils. Biochem Biophys Res Commun 240: 32–35

    Article  PubMed  CAS  Google Scholar 

  73. Burke-Gaffney A, Hellewell PG (1996) Eotaxin stimulates eosinophil adhesion to human lung microvascular endothelial cells. Biochem Biophys Res Commun 221: 35–40

    Article  Google Scholar 

  74. Alam R, Stafford S, Forsythe P, Harrison R, Faubion D, Lett-Brown MA, Grant JA (1993) RANTES is a chemotactic and activating factor for human eosinophils. J Immunol 150: 3442–3447

    PubMed  CAS  Google Scholar 

  75. Wakelin MW, Sanz M-T, Dewar A, Albelda SM, Larkin SW, Boughton-Smith NK, Williams TJ, Nourshargh S (1996) An anti-PECAM-1 antibody inhibits leukocyte extravasation from mesenteric microvessels in vivo by blocking the passage through the basement membrane. J Exp Med 184: 229–239

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Basel AG

About this chapter

Cite this chapter

Jose, P.J., Burke-Gaffney, A., Williams, T.J. (1999). Regulation of Eosinophil Migration. In: Stockley, R.A. (eds) Molecular Biology of the Lung. Respiratory Pharmacology and Pharmacotherapy. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8784-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8784-7_7

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9773-0

  • Online ISBN: 978-3-0348-8784-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics