Skip to main content

Gene Therapy for Cancer: Prospects for the Treatment of Lung Tumours

  • Chapter
Molecular Biology of the Lung

Abstract

Lung cancer is the most common fatal malignancy in the developed world, accounting for about 10% of all cancers, and increasing in incidence by about 0.5% per year in the UK [1]. Non-small cell lung cancer (NSCLC) comprises about 75% of all lung cancers and includes adenocarcinoma, squamous cell, large cell and bronchioalveolar carcinoma. Over the past 20 years, despite advances in medical and surgical intervention, there has been little change in the 5-year survival rates for lung cancer, with only 10% of patients surviving for 5 years after diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boring CC, Squires TS, Tong T (1992) Cancer statistics. Cancer J Clin 42: 19–38

    Article  CAS  Google Scholar 

  2. Goyette MC, Cho K, Fasching CL et al. (1992) Progression of colorectal cancer is associated with multiple tumor suppressor gene defects but inhibition of tumorigenicity is accomplished by correction of any single defect via chromosome transfer. Mol Cell Biol 12: 1387–1395

    PubMed  CAS  Google Scholar 

  3. Takahashi T, Carbone D, Takahashi T et al. (1992) Wild-type but not mutant p53 suppresses the growth of human lung cancer cells bearing multiple genetic lesions. Cancer Res 52: 2340–2343

    PubMed  CAS  Google Scholar 

  4. Donahue RE, Kesseler SW, Bodine D et al. (1992) Helper virus-induced T cell lymphoma in non-human primates after retroviral mediated gene transfer. J Exp Med 176: 1125–1135

    Article  PubMed  CAS  Google Scholar 

  5. Markowitz D, Goff S, Bank A (1988) Construction and use of a safe and efficient amphotropic packaging cell line. Virology 167: 400–406

    PubMed  CAS  Google Scholar 

  6. Bartholomew RM, Esser AF, Muller-Eberhard HJ (1978) Lysis of oncornaviruses by human serum: Isolation of the viral complement (C1) receptor and identification as p15C. J Exp Med 147: 844–853

    Article  PubMed  CAS  Google Scholar 

  7. Cossett FL, Takeuchi Y, Battini JL et al. (1995) High-titre packaging cells producing recombinant retroviruses resistant to human serum. J Virol 69: 7430–7436

    Google Scholar 

  8. Wold WSM, Gooding LR (1991) Region E3 of adenovirus: a cassette of genes involved in host immunosurveillance and virus-cell interactions. Virology 184: 1–8

    Article  PubMed  CAS  Google Scholar 

  9. Kochanek S, Clemens PR, Mitani K et al. (1996) A new adenoviral vector: Replacement of all viral coding sequences with 28 kb of DNA independently expressing both full-length dystrophin and beta-galactosidase. Proc Natl Acad Sci USA 93: 5731–5736

    Article  PubMed  CAS  Google Scholar 

  10. Russel DM, Miller AD, Alexander IE (1994) Adeno-associated virus vectors preferentially transduce cells in S phase. Proc Natl Acad Sci USA 91: 8915–8919

    Article  Google Scholar 

  11. Halbert CL, Alexander IE, Wolgamot GM, Miller AD (1995) Adeno-associated virus vectors transduce primary cells much less efficiently than immortalized cells. J Virol 69: 1473–1479

    PubMed  CAS  Google Scholar 

  12. Clinical Protocols (1995) Cancer Gene Ther 2: 225–234

    Google Scholar 

  13. Huang Q, Vonsattel JP, Schaffer PA et al. (1992) Introduction of a foreign gene (Escherichia coli lacZ) into rat neostriatal neurons using herpes simplex virus mutants: a light and electron microscopy study. Exp Neurol 115: 303–316

    Article  PubMed  CAS  Google Scholar 

  14. Breakefield XO (1993) Gene delivery into the brain using virus vectors. Nature Genet 3: 187–189

    Article  PubMed  CAS  Google Scholar 

  15. McKie EA, MayLean AR, Lewis AD et al. (1996) Selective in vitro replication of herpes simplex virus type 1 (HSV-1) ICP34.5 null mutants in primary human CNS tumours-evaluation of a potentially effective clinical therapy. Br J Cancer 74: 745–752

    Article  PubMed  CAS  Google Scholar 

  16. Kucharczuk JC, Randazzo B, Chang MY et al. (1997) Use of a “replication-restricted” herpes virus to treat experimental human malignant mesothelioma. Cancer Res 57: 466–471

    PubMed  CAS  Google Scholar 

  17. Wolff JA, Malone RW, Williams P et al. (1990) Direct gene transfer in mouse muscle in vivo. Science 247: 1465–1468

    Article  PubMed  CAS  Google Scholar 

  18. Neumann E, Schaefer-Ridder M, Wang Y, Hofschneider PH (1982) Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J 1: 841–845

    PubMed  CAS  Google Scholar 

  19. Yang N-S, Burkholder J, Roberts B et al. (1990) In vitro and in vivo gene transfer to mammalian somatic cells by particle bombardment. Proc Natl Acad Sci USA 87: 9568–9572

    Article  PubMed  CAS  Google Scholar 

  20. Feigner PL, Gadek TR, Holm M et al. (1987) Lipofection: a highly efficient liposome-mediated DNA-transfection procedure. Proc Natl Acad Sci USA 84: 7413–7417

    Article  Google Scholar 

  21. Farhood H, Bottega R, Epand RM et al. (1992) Effect of cationic cholesterol derivatives on gene transfer and protein. Biochim Biophys Acta 1111: 239–246

    Article  PubMed  CAS  Google Scholar 

  22. Tursz T, Cesne AL, Baldeyrou P et al. (1996) Phase I study of a recombinant adenovirus-mediated gene transfer in lung cancer patients. J Natl Cancer Instit 88: 1857–1863

    Article  CAS  Google Scholar 

  23. Roth JA, Nguyen D, Lawrence DD et al. (1996) Retrovirus-mediated wild-type p53 gene transfer to tumors of patients with lung cancer. Nature Med 2: 985–991

    Article  PubMed  CAS  Google Scholar 

  24. Kun LE, Gajjar A, Muhlbauer M et al. (1995) Stereotactic injection of herpes simplex thymidine kinase vector producer cells (PA317-G1Tk1SvNa.7) and intravenous ganciclovir for the treatment of progressive or recurrent primary supratentorial pediatric malignant brain tumors. Hum Gene Ther 6: 1231–1255

    Article  PubMed  CAS  Google Scholar 

  25. Klatzmann D (1996) Gene therapy for metastatic malignant melanoma: evaluation of tolerance to intratumoral injection of cells producing recombinant retroviruses carrying the herpes simplex virus type 1 thymidine kinase gene, to be followed by ganciclovir administration. Hum Gene Ther 7: 255–267

    Article  PubMed  CAS  Google Scholar 

  26. Wu GY, Wilson JM, Shalaby F et al. (1991) Receptor mediated gene delivery in vivo-partial correction of genetic analbuminemia in Nagrase rats. J Biol Chem 266: 14338–14342

    PubMed  CAS  Google Scholar 

  27. Culver KW, Ram Z, Wallbridge S et al. (1992) In vivo gene transfer with retroviral vector-producer cells for treatment of experimental brain tumors. Science 256: 1550–1552

    Article  PubMed  CAS  Google Scholar 

  28. Shinkai T, Saijo N, Tominaga K et al. (1986) Serial plasma carcinoembryonic antigen measurement for monitoring patients with advanced lung cancer during chemotherapy. Cancer 57: 1318–23

    Article  PubMed  CAS  Google Scholar 

  29. Benchimol S, Fuks A, Joth S et al. (1989) Carcinoembryonic antigen, a human tumour marker, functions as an intercellular adhesion molecule. Cell 57: 327–334

    Article  PubMed  CAS  Google Scholar 

  30. Thompson JA, Grunert F, Zimmermann W (1991) Carcinoembryonic antigen gene family: Molecular biology and clinical perspectives. J Clin Lab Anal 5: 344–366

    Article  PubMed  CAS  Google Scholar 

  31. Richards CA, Wolberg AS, Huber BE (1993) The transcriptional control region of the human carcinoembryonic antigen gene: DNA sequence and homology studies. DNA Sequence 4: 185–196

    PubMed  CAS  Google Scholar 

  32. Balague C, Gambus G, Carrato C et al. (1994) Altered expression of MUC2, MUC4 and MUC5 mucin genes in pancreas tisue and cancer cell lines. Gastroenterology 106: 1054–1061

    PubMed  CAS  Google Scholar 

  33. Hollingsworth MA, Strawhecker JM, Caffrey TC, Mack DR (1994) Expression of MUC1, MUC2, MUC3 and MUC4 mucin messenger RNAs in human pancreatic and intestinal tumour cell lines. Int J Cancer 57: 198–203

    Article  PubMed  CAS  Google Scholar 

  34. Leung HY, Hughes CM, Kloppel G et al. (1994) Localisation of fibroblast growth factors and their receptors in pancreatic adenocarcinoma by in situ hybridisation. Int J Oncol 4: 1219–1223

    PubMed  CAS  Google Scholar 

  35. Yarden Y, Weinberg RA (1989) Experimental appraoches to hypothetical hormones-detection of a candidate ligand of the neu proto-oncogene. Proc Natl Acad Sci USA 86: 3179–3183

    Article  PubMed  CAS  Google Scholar 

  36. Huber BE, Richards CA, Krenitsky TA (1991) Retroviral-mediated gene transfer for the treatment of hepatocellular carcinoma: an innovative approach for cancer therapy. Proc Natl Acad Sci USA 88: 8039–8043

    Article  PubMed  CAS  Google Scholar 

  37. Kuriyama M (1986) Prostata-specific antigen in prostate cancer. Int J Biol Markers 1: 67–76

    PubMed  CAS  Google Scholar 

  38. Kumagai T, Tanio Y, Osaki T et al. (1996) Eradication of Myc-overexpressing small cell lung cancer cells transfected with herpes simplex virus thymidine kinase gene containing Myc-Max response elements. Cancer Res 56: 354–358

    PubMed  CAS  Google Scholar 

  39. Debbas M, White E (1993) Wild-type p53 mediates apoptosis by E1A, which is inhibited by E1B. Genes Devel 7: 546–554

    Article  PubMed  CAS  Google Scholar 

  40. Bischoff JR, Kirn DH, Williams A et al. (1996) An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science 274: 373–376

    Article  PubMed  CAS  Google Scholar 

  41. Heise C, Sampson-Johannes A, Williams A et al. (1997) ONYX-015, an E1B attenuated adenovirus, causes tumor-specific cytolysis and antitumoral efficacy that can be augmented by standard chemotherapeutic agents. Nature Med 3: 639–645

    Article  PubMed  CAS  Google Scholar 

  42. Takahashi T, Takahashi T, Suzuki H et al. (1991) The p53 gene is very frequently mutated in small-cell lung cancer with a distinct nucleotide substitution pattern. Oncogene 6: 1775–1778

    PubMed  CAS  Google Scholar 

  43. Brambilla E, Gazzeri S, Moro D et al. (1993) Immunohistochemical study of p53 in human lung carcinomas. Am J Pathol 143: 199–210

    PubMed  CAS  Google Scholar 

  44. Liu TJ, Zhang WW, Taylor DL et al. (1994) Growth suppression of human head and neck cancer cells by the introduction of a wild-type p53 gene via a recombinant adenovirus. Cancer Res 54: 3662–3667

    PubMed  CAS  Google Scholar 

  45. Aisenberg AC, Wilkes BM, Jacobson JQ (1988) The bcl-2 gene is rearranged in many diffuse B-cell lymphomas. Blood 71: 969–972

    PubMed  CAS  Google Scholar 

  46. Fontanini G, Vignati S, Bigini D et al. (1995) Bcl-2 protein: a prognostic factor inversely correlated to p53 in non-small-cell lung cancer. Br J Cancer 71: 1003–1007

    Article  PubMed  CAS  Google Scholar 

  47. Cai DW, Mukhopadhyay T, Liu Y et al. (1993) Stable expression of the wild-type p53 gene in human lung cancer cells after retrovirus-mediated gene transfer. Hum Gene Ther 4: 617–624

    Article  PubMed  CAS  Google Scholar 

  48. Fujiwara T, Cai DW, Georges RN et al. (1994) Therapeutic effect of a retroviral wild-type p53 expression vector in an orthotopic lung cancer model. J Natl Cancer Instit 86: 1458–1462

    Article  CAS  Google Scholar 

  49. Nyguyen DM, Spitz FR, Yen N et al. (1996) Gene therapy for lung cancer: enhancement of tumor suppression by a combination of sequential systemic cisplatin and adenovirus-mediated p53 gene transfer. J Thorac Cardiovasc Surg 112: 1372–1376

    Article  Google Scholar 

  50. Moolten F (1986) Tumour chemosensitivity conferred by inserted herpes thymidine kinase genes: paradigm for a prospective cancer control strategy. Cancer Res 46: 5276–5281

    PubMed  CAS  Google Scholar 

  51. Haskell CM (1990) Drugs used in cancer chemotherapy. In: CM Haskell (ed). Cancer treatment. 3rd edn. WB Saunders, Philadelphia, 44–101

    Google Scholar 

  52. Anlezark GM, Melton RG, Sherwood RF et al. (1992) The bioactivation of CB 1954.I. Purification and properties of a nitroreductase enzyme from Escherichia coli — a potential enzyme for antibody direct enzyme therapy (ADEPT). Biochem Pharmacol 44: 2289–2295

    Article  PubMed  CAS  Google Scholar 

  53. Knox RJ, Friedlos F, Jarman M, Roberts JJ (1988) A new cytotoxic, DNA interstrand cross-linking agent, 5-(aziridin-1-yl)-4-hydroxylamino-2-nitrobenzamide, is formed from 5-(aziridin-1-yl)-2,4-dinitrobenzamide (CB 1954) by a nitroreductase enzyme in Walker carcinoma lines. Biochem Pharmacol 37: 4661–4669

    Article  PubMed  CAS  Google Scholar 

  54. Smythe WR, Hwang HC, Amin KM et al. (1994) Use of recombinant adenovirus to transfer the herpes simplex virus thymidine kinase (HSVtk) gene to thoracic neoplasms: an effective in vitro drug sensitization system. Cancer Res 54: 2055–2059

    PubMed  CAS  Google Scholar 

  55. Osaki T, Tanio Y, Tachibana I et al. (1994) Gene therapy for carcinoembryonic antigen-producing human lung cancer cells by cell type-specific expression of herpes simplex virus thymidine kinase gene. Cancer Res 54: 5258–5261

    PubMed  CAS  Google Scholar 

  56. Grilli R, Oxman AD, Julian JA (1993) Chemotherapy for advanced non-small-cell lung cancer: how much benefit es enough? J Clin Oncol 11: 1866–1872

    PubMed  CAS  Google Scholar 

  57. Johnson BE, Makuch RW, Simmons AD et al. (1988) myc family DNA amplification in small cell lung cancer patients’ tumors and corresponding cell lines. Cancer Res 48: 5163–5166

    PubMed  CAS  Google Scholar 

  58. Muhle-Goll C, Nilges M, Pastore A (1995) The leucine zippers of the HLA-LZ proteins Max and c-Myc preferentially form heterodimers. Biochemistry 34: 13544–13564

    Article  Google Scholar 

  59. Fisher F, Crouch DH, Jayaraman PS et al. (1993) Transcription activation by Myc and Max: flanking sequences target activation to a subset of CACGTG motifs in vivo. EMBO J 12: 5075–5082

    PubMed  CAS  Google Scholar 

  60. Pardoll DM (1993) Cancer vaccines. Immunol Today 14: 310–316

    Article  PubMed  CAS  Google Scholar 

  61. Sivanandham M, Scoggin SD, Sperry RG, Wallack MK (1992) Prospects for gene therapy and lymphokine therapy for metastatic melanoma. Ann Plastic Surg 28: 114–118

    Article  CAS  Google Scholar 

  62. Dillman RO (1994) The clinical experience with interleukin-2 in cancer therapy. Cancer Biother 9: 183–209

    Article  PubMed  CAS  Google Scholar 

  63. Lejeune F, Lienard D, Eggermont A et al. (1994) Rationale for using TNF alpha and chemotherapy in regional treatment of melanoma. J Cell Biochem 56: 52–61

    Article  PubMed  CAS  Google Scholar 

  64. James RF, Edwards S, Hui KM et al. (1991) The effect of class II gene transfection to the tumorigenicity of the H-2K negative mouse leukemia cell line. Immunology 72: 213–218

    PubMed  CAS  Google Scholar 

  65. Dranoff G, Jaffe E, Lazenby A et al. (1993) Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific and long-lasting anti-tumor immunity. Proc Natl Acad Sci USA 90: 3539–3543

    Article  PubMed  CAS  Google Scholar 

  66. Plautz GE, Yang Z-Y, Wu B-Y et al. (1993) Immunotherapy of malignancy by in vivo gene transfer into tumors. Proc Natl Acad Sci USA 90: 4645–4649

    Article  PubMed  CAS  Google Scholar 

  67. Gansbacher B, Zier K, Daniels B et al. (1990) Interleukin 2 gene transfer into tumor cells abrogates tumorigenicity and induces protective immunity. J Exp Med 172: 1217–1224

    Article  PubMed  CAS  Google Scholar 

  68. Connor J, Bannerji R, Saito S et al. (1993) Regression of bladder tumors in mice treated with interleukin 2 gene-modified tumor cells. J Exp Med 177: 1127–1134

    Article  PubMed  CAS  Google Scholar 

  69. Kasid A, Morecki S, Aebersold P et al. (1990) Human gene transfer: characterization of human tumor-infiltrating lymphocytes as vehicles for retroviral-mediated gene transfer in man. Proc NatlAcad Sci USA 87: 473–477

    Article  CAS  Google Scholar 

  70. Culver KW, Cornetta K, Morgan R et al. (1991) Lymphoxytes as cellular vehicles for gene therapy in mouse and man. Proc Natl Acad Sci USA 88:3155–3159

    Article  PubMed  CAS  Google Scholar 

  71. Tan Y, Xu M, Wang W et al. (1996) IL-2 gene therapy of advanced lung cancer patients. Anticancer Res 16: 1993–1998

    PubMed  CAS  Google Scholar 

  72. Cassileth PA, Podack E, Sridhar K et al. (1995) Phase I study of transfected cancer cells expressing the interleukin-2 gene product in limited stage small cell lung cancer. Hum Gene Ther 6: 369–383

    Article  PubMed  CAS  Google Scholar 

  73. Mullen CA, Petropoulos D, Lowe RM (1996) Treatment of microscopic pulmonary metastases with recombinant autologous tumor vaccine expressing interleukin 6 and Escherichia coli cytosine deaminase suicide genes. Cancer Res 56: 1361–1366

    PubMed  CAS  Google Scholar 

  74. Mullen CA, Coale MM, Levy AT et al. (1992) Fibrosarcoma cells transduced with the IL-6 gene exhibited reduced tumorigenicity, increased immunogenicity, and decreased metastatic potential. Cancer Res 52: 6020–6024

    PubMed  CAS  Google Scholar 

  75. Consalvo M, Mullen CA, Modesti A et al. (1995) 5-Fluorocytosine-induced eradication of murine adenocarcinomas engineered to express the cytosine deaminase suicide gene requires host immune competence and leaves an efficient memory. J Immunol 154: 5302–5312

    PubMed  CAS  Google Scholar 

  76. Bi WL, Parysek LM, Warnick R, Stambrook PJ (1993) In vitro evidence that metabolic cooperation is responsible for the bystander effect observed with HSV the retroviral gene therapy. Hum Gene Ther 4: 725–731

    Article  PubMed  CAS  Google Scholar 

  77. Freeman SM, Abbound CN, Whartenby KA et al. (1993) The “bystander effect”: tumor regression when a fraction of the tumor mass is genetically modified. Cancer Res 53: 5274–5283

    PubMed  CAS  Google Scholar 

  78. Tidd DM (1990) A potential role for antisense oligonucleotide analogues in the development of oncogene targeted chemotherapy. Anticancer Res 10: 1169–1182

    PubMed  CAS  Google Scholar 

  79. Mukhopadhyay T, Roth JA (1996) Functional inactivation of p53 by antisense RNA induces invasive ability of lung carcinoma cells and downregulates cytokeratin synthesis. Anti-cancer Research 16: 1683–1689

    CAS  Google Scholar 

  80. Saijo Y, Uchiyama B, Abe T et al. (1997) contigous four-guanosine sequence in c-myc anti-sense phosphorothioate oligonucleotides inhibits cell growth on human lung cancer cells: possible involvement of cell adhesion inhibition. Jpn J Cancer Res 88: 26–33

    Article  PubMed  CAS  Google Scholar 

  81. Dosaka-Akita H, Akie K, Hiroumi H et al. (1995) Inhibition of proliferation by L-myc anti-sense DNA for the translational initiation site in human small cell lung cancer. Cancer Res 55: 1559–1564

    PubMed  CAS  Google Scholar 

  82. Yamanishi Y, Maeda H, Hiyama K et al. (1996) Specific growth inhibition of small-cell lung cancer cells by adenovirus vector expressing antisense c-kit transcripts. Jpn J Cancer Res 87: 534–42

    Article  PubMed  CAS  Google Scholar 

  83. Olbina G, Cieslak D, Ruzdijic S et al. (1996) Reversible inhibition of IL-8 receptor B mRNA expression and proliferation in non-small cell lung cancer by antisense oligonucleotides. Anticancer Res 16: 3525–3530

    PubMed  CAS  Google Scholar 

  84. Schrump DS, Chen A, Consoli U (1996) Inhibition of lung cancer proliferation by antisense cyclin D. Cancer Gene Ther 3: 131–135

    PubMed  CAS  Google Scholar 

  85. Lee CT, Wu S, Gabrilovich D et al. (1996) Antitumor effects of an adenovirus expressing antisense insulin-like growth factor I receptor on human lung cancer cell lines. Cancer Res 56: 3038–3041

    PubMed  CAS  Google Scholar 

  86. Mukhopadhyay T, Tainsky M, Cavender AC, Roth JA (1991) Specific inhibition of K-ras expression and tumorigenicity of lung cancer cells by antisense RNA. Cancer Research 51(6): 1744–1748

    PubMed  CAS  Google Scholar 

  87. Zhang Y, Mukhopadhyay T, Donehower LA et al. (1993) Retroviral vector-mediated transduction of K-ras antisense RNA into human lung cancer cells inhibits expression of the malignant phenotype. Hum Gene Ther 4: 451–460

    Article  PubMed  CAS  Google Scholar 

  88. Georges RN, Mukhopadhyay T, Zhang Y et al. (1993) Prevention of orthotopic human lung cancer growth by intratracheal instillation of a retroviral antisense K-ras construct. Cancer Res 53: 1743–1746

    PubMed  CAS  Google Scholar 

  89. Cai DW, Mukhopadhyay T, Roth JA (1995) Suppression of lung cancer cell growth by ribozyme-mediated modification of p53 pre-mRNA. Cancer Gene Ther 2: 199–205

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Basel AG

About this chapter

Cite this chapter

Green, N.K., Gilligan, M.G., Kerr, D.J., Searle, P.F., Young, L.S. (1999). Gene Therapy for Cancer: Prospects for the Treatment of Lung Tumours. In: Stockley, R.A. (eds) Molecular Biology of the Lung. Respiratory Pharmacology and Pharmacotherapy. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8784-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8784-7_10

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9773-0

  • Online ISBN: 978-3-0348-8784-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics