Skip to main content

On Presence of Seismic Anisotropy in the Asthenosphere beneath Continents and its Dependence on Plate Velocity: Significance of Reference Frame Selection

  • Conference paper
Geodynamics of Lithosphere & Earth’s Mantle

Part of the book series: Pageoph Topical Volumes ((PTV))

  • 379 Accesses

Abstract

We examine the possibility of seismic anisotropy in the asthenosphere due to present plate motion using SKS splitting results. The fast directions of anisotropy correlate weakly with the directions of the absolute plate motion (APM) for all APM models. Weak correlation indicates the possibility of asthenospheric anisotropy as well as frozen anisotropy in the lithosphere. Detection of strain rate dependence of anisotropy is helpful to further conclusion of the problem. The selection of reference frame is important to describe shear deformation in the asthenosphere beneath continent due to plate motion. The behavior of hot spots to the mesosphere, fixed or drifted by mantle return flow, is a key of the selection of the reference frame. For the NNR-NUVEL1 model, APM correlated anisotropy appears only at plate velocity faster than 1.4 cm/yr. It suggests the new possibility of the formation of asthenospheric anisotropy in addition to frozen anisotropy in the lithosphere. A critical plate velocity for the formation of anisotropy can be caused by the dislocation-diffusion transition as a function of strain rate on a deformation mechanism map of the upper mantle olivine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alsina, D., and Snieder, R. (1995), Small-scale Sublithospheric Continental Mantle Deformation: Constraints from SKS Splitting Observations, Geophys. J. Int. 123, 431–448.

    Article  Google Scholar 

  • Alvarez, W. (1982), Geological Evidence for the Geographical Pattern of Mantle Return Flow and the Driving Mechanism of Plate Tectonics, J. Geophys. Res. 87, 6697–6710.

    Article  Google Scholar 

  • Argus, D. E., and Gordon, R. G. (1991), No-net-rotation Model of Current Plate Velocities Incorporating Plate Motion Model NUVEL-1, Geophys. Res. Lett. 18, 2039–2042.

    Article  Google Scholar 

  • Bormann, P., Burghardt, P.-T., Makeyeva, L. I., and Vinnik, L. P. (1993), Teleseismic Shear-wave Splitting and Deformations in Central Europe, Phys. Earth Planet. Inter. 78, 157–166.

    Article  Google Scholar 

  • Bormann, P., Grunthal, G., Kind, R., and Montag, H. (1996), Upper Mantle Anisotropy beneath Central Europe from SKS Wave Splitting: Effects of Absolute Plate Motion and Lithosphere-asthenosphere Boundary Topography? J. Geodynamics 22, 11–32.

    Article  Google Scholar 

  • Chase, C. G. (1979), Asthenospheric Counter Flow: A Kinematic Model, Geophys. J. Roy. Astr. Soc. 56, 1–18.

    Article  Google Scholar 

  • Christensen, N. I., and Salisbery, M. H. (1979), Seismic Anisotropy in the Oceanic Upper Mantle: Evidence of Bay of Island Ophiolite Complex, J. Geophys. Res. 84, 4601–4610.

    Article  Google Scholar 

  • DeMets, C., Gordon, R. G., Argus, D. F., and Stein, S. (1990), Current Plate Motions, Geophys. J. Int. 101, 425–478.

    Article  Google Scholar 

  • Doglioni, C. (1994), Foredeeps Versus Subduction Zones, Geology 22, 271–274.

    Article  Google Scholar 

  • Dziewonski, A., and Anderson, D. L. (1981), Preliminary Reference Earth Model, Phys. Earth Plan. Int. 25, 297–356.

    Article  Google Scholar 

  • Forsyth, D. W. (1975), The Early Structural Evolution and Anisotropy of the Oceanic Upper Mantle, Geophys. J. Royal Astr. Soc. 43, 103–162.

    Article  Google Scholar 

  • Gaherty, J. B., and Jordan, T. H. (1995), Lehmann Discontinuity as the Base of an Anisotropic Layer Beneath Continents, Science 268, 1468–1471.

    Article  Google Scholar 

  • Gordon, R. G., Present plate motions and plate boundaries. In Global Earth Physics—A Handbook of Physical Constants, 1 (ed. Ahrens, T. J.) (AGU, Washington 1995) pp. 66–87.

    Chapter  Google Scholar 

  • Gripp, A. E., and Gordon, R. (1990), Current Plate Velocities Relative to the Hot Spots Incorporating the NUVEL-1 Global Plate Motion Model, Geophys. Res. Lett. 17, 1109–1112.

    Article  Google Scholar 

  • Hess, H. (1964), Seismic Anisotropy of the Uppermost Mantle under Oceans, Nature 203, 629–631.

    Article  Google Scholar 

  • Ihinger, P. D. (1995), Mantle Flow beneath the Pacific Plate: Evidence from Seamount Segments in the Hawaiian-Emperor Chain, Am. J. Science 295, 1035–1057.

    Article  Google Scholar 

  • James, D. E., and Assumpção, M. (1996), Tectonic Implications of S-wave Anisotropy beneath SE Brazil, Geophys. J. Int. 126, 1–10.

    Article  Google Scholar 

  • Jordan, T. H. (1975), The Continental Tectosphere, Rev. Geophys. Space Phys. 13, 1–12.

    Article  Google Scholar 

  • Larson, K. M., Freymueller, J. T., and Philipsen, S. (1997), Global Plate Velocities from the Global Positioning System, J. Geophys. Res. 102, 9961–9982.

    Article  Google Scholar 

  • Liu, H., Davis, P. M., and Gao, S. (1995), SKS Splitting beneath Southern California, Geophys. Res. Lett. 22, 767–770.

    Article  Google Scholar 

  • Lliboutry, L. (1974), Plate Movement Relative to Rigid Lower Mantle, Nature 250, 298–300.

    Article  Google Scholar 

  • Kaneshima, S., and Silver, P. G. (1994), Anisotropic Loci in the Mantle beneath Central Peru, Phys. Earth Planet. Inter. 88, 257–272.

    Article  Google Scholar 

  • Karato, S. (1992), On the Lehmann Discontinuity, Geophys. Res. Lett. 19, 2255–2258.

    Article  Google Scholar 

  • Karato, S., and Wu, P. (1993), Rheology of the Upper Mantle: A Synthesis, Science 261, 771–777.

    Article  Google Scholar 

  • Karato, S., Rubie, D. C., and Yan, H. (1993), Dislocation Recovery in Olivine under Deep Upper Mantle Conditions: Implications for Creep and Diffusion, J. Geophys. Res. 98, 9761–9768.

    Article  Google Scholar 

  • Karato, S., Phase transformations and rheological properties of mantle minerals. In Earth’s Deep Interior (ed. Crossley, D. J.) (Gordon and Breach 1997) pp. 223–272.

    Google Scholar 

  • Kubo, A., Hiramatsu, Y., Kanao, M., Ando, M., and Terashima, T. (1995), An Analysis of the SKS Splitting at Syowa Station in Antarctica, Proc. NIPR Symp. Antarct. Geosci. 8, 25–34.

    Google Scholar 

  • Kubo, A., Hiramatsu, Y., and Kanao, M. (1996), Shear-wave Anisotropy by SKS Splitting in Antarctica, 30th International Geological Congress Beijing.

    Google Scholar 

  • Minster, J. B., and Jordan, T. H. (1978), Present-day Plate Motions, J. Geophys. Res. 83, 5331–5354.

    Article  Google Scholar 

  • Molnar, P., and Stock, J. (1987), Relative Motions of Hotspots in the Pacific, Atlantic and Indian Oceans since Late Cretaceous Time, Nature 327, 587–591.

    Article  Google Scholar 

  • Montagner, J.-P. (1994), Can Seismology Tell us Anything about Convection in the Mantle, Rev. Geophys. 32, 115–137.

    Article  Google Scholar 

  • Montagner, J. P., and Kennet, B. L. N. (1996), How to Reconcile Body-wave and Normal-mode Reference Earth Models, Geophys. J. Int. 125, 229–248.

    Article  Google Scholar 

  • Montagner, J. P., and Tanimoto, T. (1991), Global Upper Mantle Tomography of Seismic Velocities and Anisotropics, J. Geophys. Res. 96, 20337–20351.

    Article  Google Scholar 

  • Mooney, W. D. (1995), Continental Roots Go with the Flow, Nature 375, 15.

    Article  Google Scholar 

  • Özaleybey, S., and Savage, M. K. (1995), Shear-wave Splitting beneath Western United States in Relation to Plate Tectonics, J. Geophys. Res. 100, 18135–18149.

    Article  Google Scholar 

  • Ricard, Y., Doglioni, C., and Sabadini, R. (1991), Differential Rotation between Lithosphere and Mantle: A Consequence of Lateral Mantle Viscosity Variations, J. Geophys. Res. 95, 8407–8415.

    Article  Google Scholar 

  • Russo, R. M., and Silver, P. G. (1994), Trench-parallel Flow Beneath Nazca Plate from Seismic Anisotropy, Science 263, 1105–1111.

    Article  Google Scholar 

  • Russo, R. M., Silver, P. G., Franke, M., Ambeh, W. B., and James, D. E. (1996), Shear-wave Splitting in Northeast Venezuela, Trinidad, and the Eastern Caribbean, Phys. Earth Planet. Interior 95, 251–275.

    Article  Google Scholar 

  • Savage, M. K., and Silver, P. G. (1993), Mantle Deformation and Tectonics: Constraints from Seismic Anisotropy in the Western United States, Phys. Earth Planet. Inter. 78, 207–227.

    Article  Google Scholar 

  • Schubert, G., and Yuen, D. A. (1978), Mantle Circulation with Partial Shallow Return Flow: Effects of Stresses in Oceanic Plates and Topography of the Seafloor, J. Geophys. Res. 83, 745–758.

    Article  Google Scholar 

  • Silver, P. G., and Chan, W. W. (1988), Implications for Continental Structure and Evolution from Anisotropy, Nature 335, 34–39.

    Article  Google Scholar 

  • Silver, P. G., and Chan, W. W. (1991), Shear-wave Splitting and Subcontinental Mantle Deformation, J. Geophys. Res. 96, 16429–16454.

    Article  Google Scholar 

  • Silver, P. G. (1996), Seismic Anisotropy beneath the Continents: Probing the Depths of Geology, Ann. Rev. Earth Planet. Sci. 24, 385–432.

    Article  Google Scholar 

  • Soudarin, L., and Cazenave, A. (1995), Large-scale Tectonic Plate Motions Measured with the DORIS Space Geodesy System, Geophys. Res. Lett. 22, 469–472.

    Article  Google Scholar 

  • Steinberger, B. M. (1996), Motion of Hotspots and Changes of the Earth’s Rotation Axis Caused by a Convecting Mantle, Ph.D. Thesis, Harvard University.

    Google Scholar 

  • Stoddard, P. G., and Abbott, D. (1996), Influence of the Tectosphere upon Plate Motion, J. Geophys. Res. 101, 5425–5433.

    Article  Google Scholar 

  • Tanimoto, T., and Zhang, Y. S. (1990), Lithospheric Thickness and Thermal Anomalies in the Upper Mantle Inferred from the Love Wave Data, Geophys. Res. Lett. 17, 2405–2408.

    Article  Google Scholar 

  • Tommasi, A., Vauchez, A., and Russo, R. (1996), Seismic Anisotropy in Ocean Basins: Resistive Drag of the Sublithospheric Mantle? Geophys. Res. Lett. 23, 2991–2994.

    Article  Google Scholar 

  • Turcotte, D. L., and Schubert, G., Chapter 6. Fluid mechanics. In Geodynamics (John Wiley and Sons 1982) pp. 231–237.

    Google Scholar 

  • Vinnik, L. P., Farra, V., and Romanowicz, B. (1989), Azimuthal Anisotropy in the Earth from Observations of SKS at GEOSCOPE and NARS Broadband Stations, Bull. Seismol. Soc. Am. 79, 1542–1558.

    Google Scholar 

  • Vinnik, L. P., Makeyeva, L. I., Milev, A., and Usenko, A. Y. (1992), Global Patterns of Azimuthal Anisotropy and Deformations in the Continental Mantle, Geophys. J. Int. 111, 433–447.

    Article  Google Scholar 

  • Vinnik, L. P., Green, R. W. E., and Nicolaysen, L. O. (1995), Recent Deformations of the Deep Continental Root beneath Southern Africa, Nature 375, 50–52.

    Article  Google Scholar 

  • Wenk, H.-R., Preferred Orientation in Metals and Rocks (Academic Press 1985).

    Google Scholar 

  • Zhang, S., and Karato, S. (1995), Lattice Preferred Orientation of Olivine Aggregates Deformed in Simple Shear, Nature 375, 774–777.

    Article  Google Scholar 

  • Zhang, Y.-S., and Tanimoto, T. (1993), High Resolution Global Upper Mantle Structure and Plate Tectonics, J. Geophys. Res. 98, 9793–9823.

    Article  Google Scholar 

  • Zheng, S.-H., and Gao, Y. (1994), Azimuthal Anisotropy in Lithosphere on Chinese Mainland from Observations of SKS at CDSN, Acta Seism. Sin. 7, 177–186.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Basel AG

About this paper

Cite this paper

Kubo, A., Hiramatsu, Y. (1998). On Presence of Seismic Anisotropy in the Asthenosphere beneath Continents and its Dependence on Plate Velocity: Significance of Reference Frame Selection. In: Plomerová, J., Liebermann, R.C., Babuška, V. (eds) Geodynamics of Lithosphere & Earth’s Mantle. Pageoph Topical Volumes. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8777-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8777-9_4

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9770-9

  • Online ISBN: 978-3-0348-8777-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics