Skip to main content

Seismic Anisotropy in the Deep Mantle, Boundary Layers and the Geometry of Mantle Convection

  • Conference paper
Geodynamics of Lithosphere & Earth’s Mantle

Part of the book series: Pageoph Topical Volumes ((PTV))

Abstract

An attempt is made to explore the geodynamical significance of seismic anisotropy in the deep mantle on the basis of mineral physics. The mineral physics observations used include the effects of deformation mechanisms on lattice and shape preferred orientation, the effects of pressure on elastic anisotropy and the nature of lattice preferred orientation in deep mantle minerals in dislocation creep regime. Many of these issues are still poorly constrained, but a review of recent results shows that it is possible to interpret deep mantle seismic anisotropy in a unified fashion, based on the solid state processes without invoking partial melting. The key notions are (i) the likely regional variation in the magnitude of anisotropy as deformation mechanisms change from dislocation to diffusion creep (or superplasticity), associated with a change in the stress level and/or grain-size in the convecting mantle with a high Rayleigh number, and (ii) the change in elastic anisotropy with pressure in major mantle minerals, particularly in (Mg, Fe)O. The results provide the following constraints on the style of mantle convection: (i) the SH > SV anisotropy in the bottom transition zone and the SV > SH anisotropy in the top lower mantle can be attributed to anisotropy structures (lattice preferred orientation and/or laminated structures) caused by the horizontal flow in this depth range, suggesting the presence of a mid-mantle boundary layer due to (partially) layered convection, (ii) the observed no significant seismic anisotropy in the deep mantle near subduction zones implies that deformation associated with subducting slabs is due mostly to diffusion creep (or superplasticity) and therefore slabs are weak in the deep mantle and hence easily deformed when encountered with resistance forces, and (iii) the SH> SV anisotropy in the cold thick portions of the D" layer is likely to be due to horizontally aligned shape preferred orientation in perovskite plus magnesiowüstite aggregates formed by strong horizontal shear motion in the recent past.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allègre, C., and Turcotte, D. L. (1986), Implications of a Two-component Marble-cake Mantle, Nature 323, 123–127.

    Article  Google Scholar 

  • Backus, G. E. (1962), Long-wave Elastic Anisotropy Produced by Horizontal Layering, J. Geophys. Res. 67, 4427–4440.

    Article  Google Scholar 

  • Bass, J. D., Elasticity of minerals, glasses and melts. In Mineral Physics and Crystallography: A Handbook of Physical Constants (ed. Ahrens, T. J.) (American Geophysical Union, Washington DC 1995) pp. 45–63.

    Chapter  Google Scholar 

  • Boehler, R. (1996), Melting of Mantle and Core Materials at Very High Pressures, Phil. Trans. R. Soc. Lond. A354, 1265–1278.

    Article  Google Scholar 

  • Breuer, D., Zhou, H., Yuen, D. A., and Spohn, T. (1996), Phase Transition in the Martian Mantle: Implications for the Planet’s Volcanic History, J. Geophys. Res. 101, 75731–75742.

    Article  Google Scholar 

  • Busse, F. H., Fundamentals of thermal convection. In Mantle Convection (ed. Peltier, W. R.) (Gordon and Breach, New York 1989), pp. 23–95.

    Google Scholar 

  • Cadek, O., Yuen, D. A., Cikova, H., Kido, M., Zhou, H-W., Brunet, D., and Machetel, P. (1997), New Perspectives on Mantle Dynamics from High-resolution Seismic Tomographic Model P1200, Pure appi, geophys. 151, 503–525.

    Article  Google Scholar 

  • Chen, G., Li, B., and Liebermann, R. C. (1996), Selected Elastic Moduli of Single-crystal Olivines from Ultrasonic Experiments to Mantle Pressures, Science 272, 979–980.

    Article  Google Scholar 

  • Chin, G. Y., and Mammel, W. L. (1973), A Theoretical Examination of the Plastic Deformation of Ionic Crystals: II. Analysis of uniaxial Deformation and Axisymmetric Flow for Slip on {110} <110> and {1001}<110> Systems, Metall. Trans. 4, 335–340.

    Article  Google Scholar 

  • Davies, G. F. (1995), Penetration of Plates and Plumes through the Mantle Transition Zone, Earth Planet. Sci. Lett. 133, 507–516.

    Article  Google Scholar 

  • Davies, G. F., and Richards, M. A. (1992), Mantle Convection, J. Geol. 100, 151–206.

    Article  Google Scholar 

  • Dupas, C., Green, H. W., II., Doukhan, N., Doukhan, J.-C., and Tingle, T. N. (1997), The Rheology of Olivine and Spinel Magnesium Germanate (Mg 2 GeO 4 ): TEM Study of the Defect Microstructure, Phys. Chem. Mineral, submitted.

    Google Scholar 

  • Dziewonski, A. M., and Woodhouse, H. J. (1987), Global Images of the Earth’s Interior, Science 236, 37–48.

    Article  Google Scholar 

  • Edington, J. W., Melton, K. N., and Cutler, C. P. (1976), Superplasticity, Prog. Mater. Sci. 21, 63–170.

    Article  Google Scholar 

  • Fischer, K. M., and Wiens, D. A. (1996), The Depth Distribution of Mantle Anisotropy beneath the Tonga Subduction Zone, Earth Planet. Sci. Lett. 142, 253–260.

    Article  Google Scholar 

  • Fouch, M. J., and Fischer, K. M. (1996), Mantle Anisotropy beneath Northwest Pacific Subduction Zones, J. Geophys. Res. 101, 15987–16002.

    Article  Google Scholar 

  • Franssen, R. (1993), Rheology of Synthetic Rocksalt, Ph.D. Thesis, University of Utrecht, 221 pp.

    Google Scholar 

  • Frost, H. J., and Ashby, M. F., Deformation Mechanism Maps (Pergamon Press, Oxford 1982) 167 pp.

    Google Scholar 

  • Fujimura, A. (1984), Preferred Orientation of Silicate Spinel Inferred from Experimentally Deformed Aggregates of Trevorite, J. Phys. Earth 32, 273–297.

    Article  Google Scholar 

  • Fukao, Y., Obayashi, M., Inoue, H., and Nenbai, M. (1992), Subducting Slabs Stagnant in the Transition Zone, J. Geophys. Res. 97, 4809–4822.

    Article  Google Scholar 

  • Garnero, E. J., and Lay, T. (1997), Lateral Variation in Lowermost Mantle Shear-wave Anisotropy beneath the North Pacific and Alaska, J. Geophys. Res. 102, 8121–8135.

    Article  Google Scholar 

  • Gee, L. S., and Jordan, T. H. (1988), Polarization Anisotropy and Fine-scale Structure of the Eurasian Upper Mantle, Geophys. Res. Lett. 15, 824–827.

    Article  Google Scholar 

  • Hemley, R. J., and Cohen, R. E. (1996), Structure and Bonding in the Deep Mantle and Core, Phil. Trans. R. Soc. Lond. A354, 1461–1479.

    Article  Google Scholar 

  • Isaak, D. G., Cohen, R. E., and Mehl, M. J. (1990), Calculated Elastic and Thermal Properties of MgO at High Pressures and Temperatures, J. Geophys. Res. 95, 7055–7067.

    Article  Google Scholar 

  • Ito, E., and Sato, H. (1990), Aseismicity in the Lower Mantle by Superplasticity in a Subducting Slab, Nature 351, 140–141.

    Article  Google Scholar 

  • Jarvis, G. T., and Peltier, W. R., Convection models and geophysical observations. In Mantle Convection (ed. Peltier, W. R.) (Gordon and Breach, New York, 1989), pp. 480–593.

    Google Scholar 

  • Jordan, T. H., Lerner-Lam, A. L., and Creager, K. C., Seismic imaging of boundary layers and deep mantle convection. In Mantle Convection (ed. Peltier, W.R.) (Gordon and Breach, New York 1989) pp. 97–201.

    Google Scholar 

  • Jordan, T. H., Puster, P., Glazmaier, G. A., and Tackley, P. J. (1993), Comparisons Between Seismic Earth Structures and Mantle Flow Models Based on Radial Correlation Functions, Science 261,1427–1431.

    Article  Google Scholar 

  • Kaneshima, S., and Silver, P. G. (1995), Anisotropic Loci in the Mantle beneath Central Peru, Phys. Earth Planet. Inter. 88, 257–272.

    Article  Google Scholar 

  • Karato, S. (1988), The Role of Recrystallization in the Preferred Orientation in Olivine, Phys. EarthPlanet. Inter. 51, 107–122.

    Article  Google Scholar 

  • Karato, S., Seismic anisotropy: mechanisms and tectonic implications. In Rheology of Solids and of the Earth (eds. Karato, S. and Toriumi, M.) (Oxford University Press, Oxford, 1989), pp. 393–422.

    Google Scholar 

  • Karato, S. (1992), On the Lehmann Discontinuity, Geophys. Res. Lett. 19, 2255–2258.

    Article  Google Scholar 

  • Karato, S., Phase transformations and rheological properties of mantle minerals. In Earth’s Deep Interior (eds. Crossley, D. and Soward, A. M.) (Gordon and Breach, New York, 1997a) pp. 223–272.

    Google Scholar 

  • Karato, S. (1997b), On the Separation of Crustal Component from Oceanic Lithosphere near the 660 km Discontinuity, Phys. Earth Planet. Inter. 99, 103–111.

    Article  Google Scholar 

  • Karato, S., and Wu, P. (1993), Rheology of the Upper Mantle: A Synthesis, Science 260, 771–778.

    Article  Google Scholar 

  • Karato, S., and Rubie, D. C. (1997), Towards an Experimental Study of Deep Mantle Rheology: A New Multi-anvil Specimen Assembly for Deformation Experiments under High Pressures and Temperatures, J. Geophys. Res. in press.

    Google Scholar 

  • Karato, S., Zhang, S., and Wenk, H.-R. (1995), Superplasticity in Earth’s Lower Mantle: Evidence from Seismic Anisotropy and Rock Physics, Science 270, 458–461.

    Article  Google Scholar 

  • Karki, B. B., Stixrude, L., Clark, S. J., Warren, M. C., Ackland, G. J., and Crain, J. (1997), Structure and Elasticity of MgO at High Pressure, Am. Mineral. 82, 51–60.

    Google Scholar 

  • Kendall, J.-M., and Silver, P. G. (1996), Constraints from Seismic Anisotropy on the Nature of the Lowermost Mantle, Nature 381, 409–412.

    Article  Google Scholar 

  • Li, P., Karato, S., and Wang, Z. (1996), High Temperature Creep in Fine-grained Aggregates of CaTiO 3 , Phys. Earth Planet. Inter. 95, 19–36.

    Article  Google Scholar 

  • Madon, M., and Poirier, J.-P. (1980), Dislocations in Spinel and Garnet High Pressure Polymorphs of Olivine and Pyroxene: Implications for Mantle Rheology, Science 207, 66–68.

    Article  Google Scholar 

  • Matzel, E., Sen, M. K., and Grand, S. P. (1996), Evidence for Anisotropy in the Deep Mantle beneath Alaska, Geophys. Res. Lett. 23, 2417–2420.

    Article  Google Scholar 

  • Maupin, V. (1994), On the Possibility of Anisotropy in the D″ Layer as Inferred from the Polarization of Diffracted S Waves, Phys. Earth Planet. Inter. 87, 1–32.

    Article  Google Scholar 

  • McKenzie, D. (1979), Finite Deformation during Fluid Flow, Geophys. J. R. Astr. Soc. 58, 689–715.

    Article  Google Scholar 

  • Meade, C., Silver, P. G., and Kaneshima, S. (1995a), Laboratory and Seismological Observations of Lower Mantle Isotropy, Geophys. Res. Lett. 22, 1293–1296.

    Article  Google Scholar 

  • Meade, C., Mao, H.-K., and Hu, J. (1995b), High-temperature Phase Transition and Dissociation of (Mg, Fe)SiO 3 perovskite at Lower Mantle Pressures, Science 268, 1743–1745.

    Article  Google Scholar 

  • Mitchell, T. E., Hwang, L., and Heuer, A. H. (1976), Dislocations in Spinel, J. Material. Sci. 11, 264–272.

    Article  Google Scholar 

  • Montagner, J.-P. (1994), Can Seismology Tell us Anything About Convection in the Mantle? Rev. Geophys. 32, 115–137.

    Article  Google Scholar 

  • Montagner, J.-P., and Kennett, B. L. N. (1996), How to Reconcile Body-wave and Normal-mode Reference Earth Model, Geophys. J. Int. 125, 229–248.

    Article  Google Scholar 

  • Montagner, J.-P., and Nataf, H.-C. (1986), A Simple Method for Inverting the Azimuthal Anisotropy of Surface Waves, J. Geophys. Res. 91, 511–520.

    Article  Google Scholar 

  • Montagner, J.-P., and Tanimoto, T. (1991), Global Upper Mantle Tomography of Seismic Velocities and Anisotropics, J. Geophys. Res. 96, 20337–20351.

    Article  Google Scholar 

  • Moresi, L., and Gurnis, M. (1996), Constraints on the Lateral Strength of Slabs from Three-dimensional Dynamic Flow Models, Earth Planet. Sci. Lett. 138, 15–28.

    Article  Google Scholar 

  • Nakakuki, T., Sato, H., and Fujimoto, H. (1994), Interaction of the Upwelling Plumes with the Phase and Chemical boundary at the 660 km Discontinuity: Effects of Temperature-dependent Viscosity, EarthPlanet. Sci. Lett. 121, 369–384.

    Article  Google Scholar 

  • Nataf, H.-C., Nakanishi, I., and Anderson, D. L. (1986), Measurement of Mantle Wave Velocities and Inversion for Lateral Heterogeneities and Anisotropy, 3. Inversion, J. Geophys. Res. 91, 7261–7307.

    Article  Google Scholar 

  • Nicolas, A., and Christensen, N. I., Formation of anisotropy in upper mantle peridotites: A review. In Composition, Structure and Dynamics of the Lithosphere/Asthenosphere System (eds. Fuchs, K. and Froidevaux, C) (American Geophysical Union, Washington, D.C., 1987) pp. 111–123.

    Chapter  Google Scholar 

  • Peltier, W. R. (1996), Phase-transition Modulated Mixing in the Mantle of the Earth, Phil. Trans. R. Soc, Lond. A354, 1425–1447.

    Article  Google Scholar 

  • Revenaugh, J., and Jordan, T. H. (1991), Mantle Layering from ScS Reverberations 3. The Upper Mantle, J. Geophys. Res. 96, 19781–19810.

    Article  Google Scholar 

  • Rice, R. W., Hot-working of oxides. In High Temperature Oxides, Part III (ed. Alper, A. M.) (Academic Press, New York, 1970) pp. 235–281.

    Google Scholar 

  • Riedel, M. R., and Karato, S. (1997), Grain-size Evolution in Subducted Oceanic Lithosphere Associated with the Olivine-spinel Transformation and its Effects on rheology, Earth Planet. Sci. Lett. 148, 27–44.

    Article  Google Scholar 

  • Rigden, S. M., Gwanmesia, G. D., FitzGerald, J. D., Jackson, I., and Liebermann, R. C. (1991), Spinel Elasticity and Seismic Structure of the Transition Zone of the Mantle, Nature 354, 143–145.

    Article  Google Scholar 

  • Ringwood, A. E. (1991), Phase Transformations and their Bearings on the Constitution and Dynamics of the Mantle, Geochim. Cosmochim. Acta 55, 2083–2110.

    Article  Google Scholar 

  • Ringwood, A. E., and Irifune, T. (1988), Nature of the 650 km Seismic Discontinuity: Implications for Mantle Dynamics and Differentiation, Nature 331, 131–136.

    Article  Google Scholar 

  • Sharp, T. G., Bussod, G. Y. A., and Katsura, T. (1994), Microstructures in β-Mg 1.8 FeO 2 SiO 4 Experimentally Deformed at Transition Zone Conditions, Phys. Earth Planet. Inter. 86, 69–83.

    Article  Google Scholar 

  • Silver, P. G. (1996), Seismic Anisotropy beneath the Continents: Probing the Depths of Geology, Ann. Rev. Earth Planet. Sci. 24, 385–432.

    Article  Google Scholar 

  • Silver, P. G., Carlson, R. W., and Olson, P. (1988), Deep Slabs, Geochemical Heterogeneity, and the Large-scale Structure of Mantle Convection: Investigation of an Enduring Paradox, Ann. Rev. Earth Planet. Sci. 16, 477–541.

    Article  Google Scholar 

  • Steinbach, V., and Yuen, D. A. (1995), The Effects of Temperature-dependent Viscosity on Mantle Circulation with Two Major Phase Transition, Phys. Earth Planet. Inter. 90, 13–36.

    Article  Google Scholar 

  • Sylvander, M., and Souriau, A. (1996), Mapping S-velocity Heterogeneities in the D″ Region, from SmKS Differential Travel Times, Phys. Earth Planet. Inter. 94, 1–21.

    Article  Google Scholar 

  • Tanimoto, T., and Anderson, D. L. (1984), Mapping Mantle Convection, Geophys. Res. Lett. 11, 287–290.

    Article  Google Scholar 

  • Tong, C., Gudmundsson, O., and Kennett, B. L. N. (1994), Shear-wave Splitting in Refracted Waves Returned from the Upper Mantle Transition Zone beneath Northern Australia, J. Geophys. Res. 99, 15783–15797.

    Article  Google Scholar 

  • van der Hilst, R., and Seno, T. (1993), Effects of Relative Plate Motion on the Deep Structure and Penetration Depth of Slabs below the Izu-Bonin and Mariana Island Arcs, Earth Planet. Sci. Lett. 120, 395–407.

    Article  Google Scholar 

  • van der Hilst, R., Engdahl, R., Spakman, W., and Nolet, G. (1991), Tomographic Imaging of Subducted Lithosphere below Northwest Pacific Island Arcs, Nature 353, 37–43.

    Article  Google Scholar 

  • van Houtte, P., and Wagner, F., Development of textures by slip and twinning. In Preferred Orientation in Deformed Metals and Rocks (ed. Wenk, H-R.) (Academic Press, Orlando 1985) pp. 233–258.

    Google Scholar 

  • Vinnik, L., and Montagner, J.-P. (1996), Shear-wave Splitting in the Mantle Ps Phases, Geophys. Res. Lett. 23, 2449–2452.

    Article  Google Scholar 

  • Vinnik, L., Romanowicz, B., Le Stunff, Y., and Makeyeva, L. (1995), Seismic Anisotropy in the D″ Layer, Geophys. Res. Lett. 22, 1657–1660.

    Article  Google Scholar 

  • Weidner, D. J., Sawamoto, H., Sasaki, S., and Kumazawa, M. (1984), Single-crystal Elastic Properties of the Spinel Phase of Mg 2 SiO 4 , J. Geophys. Res. 89, 7852–7860.

    Article  Google Scholar 

  • Williams, R. O. (1962), Shear Textures in Copper, Brass, Aluminum, Iron, and Zirconium, Trans. Metall. Soc. AIME 224, 129–140.

    Google Scholar 

  • Williams, Q., and Garnero, E. J. (1996), Seismic Evidence for Partial Melt at the Base of Earth’s Mantle, Science 273, 1528–1530.

    Article  Google Scholar 

  • Wysession, M. E. (1996), Large-scale Structure at the Core-mantle Boundary from Diffracted Waves, Nature 382, 244–248.

    Article  Google Scholar 

  • Yamazaki, D., Kato, T., Ohtani, E., and Toriumi, M. (1996), Grain Growth Kinetics of Mg 2 SiO 4 , under Lower Mantle Condition, Science 274, 2052–2054.

    Article  Google Scholar 

  • Young, C. J., and Lay, T. (1987), The Core-mantle Boundary, Ann. Rev. Earth Planet. Sci. 15, 25–46.

    Article  Google Scholar 

  • Zhang, S., and Karato, S. (1997), Simple Shear Deformation of Polycrystalline Orthorhombic Perovskite CaTiO 3 , Tectonophysics, in press.

    Google Scholar 

  • Zhang, S., Zimmerman, M. R., Daines, M. J., Karato, S., and Kohlstedt D. L. (1995), Lattice Preferred Orientation and Melt Distribution in Experimentally Sheared Olivine-basalt Rocks, EOS, Trans. AGU 75, S281.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Basel AG

About this paper

Cite this paper

Karato, Si. (1998). Seismic Anisotropy in the Deep Mantle, Boundary Layers and the Geometry of Mantle Convection. In: Plomerová, J., Liebermann, R.C., Babuška, V. (eds) Geodynamics of Lithosphere & Earth’s Mantle. Pageoph Topical Volumes. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8777-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8777-9_19

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9770-9

  • Online ISBN: 978-3-0348-8777-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics