Skip to main content

Monodromy of Complete Intersections and Surface Potentials

  • Chapter
Singularities

Part of the book series: Progress in Mathematics ((PM,volume 162))

  • 797 Accesses

Abstract

Following Newton, Ivory and Arnold, we study the Newtonian potentials of algebraic hypersurfaces in R n. The ramification of (analytic continuations of) these potential depends on a monodromy group, which can be considered as a proper subgroup of the local monodromy group of a complete intersection (acting on a twisted vanishing homology group if n is odd). Studying this monodromy group we prove, in particular, that the attraction force of a hyperbolic layer of degree d in R n coincides with appropriate algebraic vector-functions everywhere outside the attracting surface if n = 2 or d = 2, and is non-algebraic in all domains other than the hyperbolicity domain if the surface is generic and (d ≥ 3)&(n ≥ 3)&(n + d ≥ 8).

Recently W. Ebeling removed the last restriction d + n ≥ 8, see his Appendix to this article.

Research supported by the Russian Fund of Basic Investigations (project 95-01-00846a) and INTAS grant (Project # 4373)

To Egbert Brieskorn with admiration

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V.I. Arnold: On the Newtonian potential of hyperbolic layers. Trudy Tbilisskogo Universiteta, Ser. Math./Mekh./Astron., V. 232–233, # 13–14, 23–29, (1982). English transi, in: Selecta Math. Soviet., 4:2, 103–106, (1985).

    Google Scholar 

  2. V.I. Arnold: Magnetic field analogues of the theorems of Newton and Ivory. Uspekhi Mat. Nauk 38:5, 145–146, (1983).

    Google Scholar 

  3. V.I. Arnold: Kepler’s second law and the topology of Abelian integrals. Kvant, No. 12,17–21 (Russian); A topological proof of transcendence of Abelian integrals in Newton’s Principia, Quant, No. 12, 1–15, (1987); The 300-th anniversary of mathematical natural philosophy and celestial mechanics, Priroda, No. 8, 5–15, (1987) (in Russian).

    Google Scholar 

  4. M.F. Atiyah; R. Bott; L. Gârding: Lacunas for hyperbolic differential operators with constant coefficients. Acta Math., 124, 109–189, (1970) and 131, 145–206, (1973).

    Article  MathSciNet  MATH  Google Scholar 

  5. V.I. Arnold; V.A. Vassiliev: Newton’s Principia read 300 years later. Notices Amer. Math. Soc., 36:9, 1148–1154, (1989).

    MathSciNet  Google Scholar 

  6. V.I. Arnold; A.N. Varchenko; S.M. Gusein-Zade: Singularities of differentiate maps. V 1,2; “Nauka”, Moscow, (1982, 1984); Engl, transl: Birkhäuser, Basel, (1985, 1988).

    Google Scholar 

  7. V.I. Arnold; V.A. Vassiliev; V.V. Goryunov; O. V. Lyashko: Singularities, 1 and 2. Dynamical systems, 6;39, VINITI, Moscow, (1988; 1989); English transi.: Encyclopaedia Math. Sci., V. 6; 39, Springer-Verlag, Berlin, New York, (1993).

    Google Scholar 

  8. W. Ebeling: The monodromy groups of isolated singularities of com-plete intersections. Lect. Notes Math., vol.1293, Springer, Berlin a.o., (1987).

    Google Scholar 

  9. A.B. Givental: Polynomiality of the electrostatic potentials. Uspekhi Mat. Nauk, 39:5, 253–254 (in Russian), (1984).

    Google Scholar 

  10. A.B. Givental: Twisted Picard-Lefschetz formulae. Funkts. Anal, i Prilozh., 22:1, 12–22, (1988); Engl, translation in Functional Anal. Appl., 22:1, 10–18 (1988).

    MathSciNet  Google Scholar 

  11. A.M. Gabrielov, Bifurcations, Dynkin diagrams and modality of isolated singularities, Funkts. Anal, i Prilozh., 8:2, 7–12, (1974); Engl, transi, in Funct. Anal. Appl., 8, 94–98, (1974).

    MathSciNet  Google Scholar 

  12. G.-M. Greuel; H.A. Hamm: Invarianten quasihomogener vollständiger Durchschnitte. Invent. Math., 49:1, 67–86, (1978).

    Article  MathSciNet  MATH  Google Scholar 

  13. Ph. Griffiths; J. Harris: Principles of algebraic geometry. John Wiley & Sons, New York a.o., (1978).

    MATH  Google Scholar 

  14. M. Goresky; R. MacPherson: Stratified Morse theory. Springer-Verlag, Berlin and New York, (1986).

    Google Scholar 

  15. H. Grauert; R. Remmert: Komplexe Räume. Math. Ann., 136:2, 245–318, (1958).

    Article  MathSciNet  MATH  Google Scholar 

  16. S.M. Gusein-Zade: Monodromy groups of isolated singularities of hy-persurfaces. Uspekhi Mat. Nauk 32, no.2, 23–65, (1977); Engl, transl, in Russian Math. Surveys 32, No.2, 23–69, (1977).

    MathSciNet  Google Scholar 

  17. H. Hamm: Locale topologische Eigenschaften komplexer Räume. Math. Ann., 191, 235–252, (1971).

    Article  MathSciNet  MATH  Google Scholar 

  18. J. Ivory: On the attraction of homogeneous ellipsoids. Philos. Trans., 99, 345–372, (1809).

    Google Scholar 

  19. J. Milnor: Singular points of complex hypersurf aces. Princeton Univ. Press, Princeton, NJ, and Univ. of Tokyo Press, Tokyo, (1968).

    Google Scholar 

  20. J. Milnor; P. Orlik: Isolated singularities, defined by weighted isolated polynomials. Topology, 9:2, 385–393, (1970).

    Article  MathSciNet  MATH  Google Scholar 

  21. W. Nuij: A note on hyperbolic polynomials. Math. Scand. 23, 69–72, (1968).

    MathSciNet  MATH  Google Scholar 

  22. I. Newton: Philosophiae Naturalis Principia Mathematiea. London, (1687).

    Google Scholar 

  23. I.G. Petrovsky: On the diffusion of waves and the lacunas for hyperbolic equations. Matem. Sbornik, 17(59), 289–370, (1945).

    Google Scholar 

  24. F. Pham: Formules de Picard-Lefschetz génèralisées et ramification des intégrales. Bull. Soc. Math. France, 93, 333–367, (1965).

    MathSciNet  MATH  Google Scholar 

  25. F. Pham: Introduction à l’étude topologique des singularités de Landau. Gauthier-Villars, Paris, (1967).

    MATH  Google Scholar 

  26. A.D. Vainshtein; B.Z. Shapiro: Multidimensional analogues of the Newton and Ivory theorems. Funkts. Anal, i Prilozh., 19:1, 20–24, (1985); Engl, translation in Functional Anal. Appl., 19:1, 17–20, (1985).

    MathSciNet  Google Scholar 

  27. V.A. Vassiliev: Sharpness and the local Petrovskii condition for hyperbolic equations with constant coefficients. Izv. Akad. Nauk SSSR Ser. Mat. 50, 242–283, (1986); Engl, transl. in Mat. USSR Izv. 28, 233–273, (1987).

    MathSciNet  Google Scholar 

  28. V.A. Vassiliev: Ramified Integrals, Singularities and Lacunas. Kluwer, (1994).

    Google Scholar 

  29. O. Zariski: On the Poincaré group of a projective hypersurface. Ann. Math. 38, 131–141, (1937).

    Article  MathSciNet  Google Scholar 

References

  1. P. Deligne: La conjecture de Weil. II, Publ. Math. IHES 52, 137–252, (1980).

    MathSciNet  MATH  Google Scholar 

  2. W. Ebeling; S.M. Gusein-Zade: Suspensions of fat points and their intersection forms. These proceedings.

    Google Scholar 

  3. W. Ebeling; Ch. Okonek: Donaldson invariants, monodromy groups, and singularities. Intern. J. Math. 1, 233–250, (1990).

    Article  MathSciNet  MATH  Google Scholar 

  4. R. Friedman; J.W. Morgan: Smooth Four-Manifolds and Complex Surfaces. Springer, Berlin etc., (1994).

    MATH  Google Scholar 

  5. V.A. Vassiliev: Monodromy of complete intersections and surface potentials. These proceedings.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Basel AG

About this chapter

Cite this chapter

Vassiliev, V.A. (1998). Monodromy of Complete Intersections and Surface Potentials. In: Arnold, V.I., Greuel, GM., Steenbrink, J.H.M. (eds) Singularities. Progress in Mathematics, vol 162. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8770-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8770-0_11

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9767-9

  • Online ISBN: 978-3-0348-8770-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics