Skip to main content

Properties of Pseudoholomorphic Curves in Symplectizations III: Fredholm Theory

  • Chapter

Part of the book series: Progress in Nonlinear Differential Equations and Their Applications ((PNLDE,volume 35))

Abstract

We shall study smooth maps ũ: S → ℝ x M of finite energy defined on the punctured Riemann surface S = S\Γ and satisfying a Cauchy-Riemann type equation Tũ ∘ j = Jũ ∘ Tũ for special almost complex structures J, related to contact forms A on the compact three manifold M. Neither the domain nor the target space are compact. This difficulty leads to an asymptotic analysis near the punctures. A Fredholm theory determines the dimension of the solution space in terms of the asymptotic data defined by non-degenerate periodic solutions of the Reeb vector field associated with λ on M, the Euler characteristic of S, and the number of punctures. Furthermore, some transversality results are established.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Abbas and H. Hofer. Holomorphic curves and global questions in contact geometry. To appear in Birkhäuser.

    Google Scholar 

  2. L. Ahlfors and L. Bers. “Riemann’s mapping theorem for variable metrics.” Ann. of Math. 72 (1960), 385–404.

    Article  MathSciNet  MATH  Google Scholar 

  3. D. Bennequin. “Entrelacements et équations de Pfaff.” Astérisque, 107-108:83–161, 1983.

    Google Scholar 

  4. S.S. Chern. “An elementary proof of the existence of isothermal parameters on a surface.” Proc. Amer. Math. Soc. 6 (1955), 771–782.

    Article  MathSciNet  MATH  Google Scholar 

  5. Y. Eliashberg. “Classification of overtwisted contact structures on three manifolds.” Inv. Math., pages 623–637, 1989.

    Google Scholar 

  6. Y. Eliashberg. “Filling by holomorphic discs and its applications.” London Math. Society Lecture Notes, pages 45–67, 1991. Series 151.

    Google Scholar 

  7. Y. Eliashberg. “Contact 3-manifolds, twenty year since J. Martinet’s work.” Ann. Inst. Fourier 42 (1992), 165–192.

    Article  MathSciNet  MATH  Google Scholar 

  8. Y. Eliashberg. “Legendrian and transversal knots in tight contact manifolds”. In: Topological methods in modern mathematics. Publish or Perish, 1993.

    Google Scholar 

  9. A. Floer. “The unregularised gradient flow of the symplectic action.” Comm. Pure Appl. Math. 41 (1988), 775–813.

    Article  MathSciNet  MATH  Google Scholar 

  10. A. Floer. “Symplectic fixed points and holomorphic spheres.” Comm. Math. Phys. 120 (1989), 575–611.

    Article  MathSciNet  MATH  Google Scholar 

  11. A. Floer, H. Hofer, and D. Salamon. “Transversality results in the elliptic Morse theory for the action functional.” Duke Math. Journal 30 (1995), No. 1, 251–292.

    Article  MathSciNet  Google Scholar 

  12. E. Giroux. “Convexité en topologie de contact.” Comm. Math. Helvetici 66 (1991), 637–677.

    Article  MathSciNet  MATH  Google Scholar 

  13. J.W. Gray. “Some global properties of contact structures.” Ann. of Math. 2(69) (1959), 421–450.

    Article  Google Scholar 

  14. M. Gromov. “Pseudoholomorphic curves in symplectic manifolds.” Invent. Math. 82 (1985), 307–347.

    Article  MathSciNet  MATH  Google Scholar 

  15. H. Hofer. “Pseudoholomorphic curves in symplectizations with application to the Weinstein conjecture in dimension three.” Invent. Math. 114 (1993), 515–563.

    Article  MathSciNet  MATH  Google Scholar 

  16. H. Hofer, V. Lizan, and J.-C. Sikorav. On generecity for holomorphic curves in 4~ dimensional almost complex manifolds. Preprint.

    Google Scholar 

  17. H. Hofer, K. Wysocki, and E. Zehnder. “A characterisation of the tight three-sphere.” Duke Math. Journal 81 (1995), 159–226.

    Article  MathSciNet  MATH  Google Scholar 

  18. H. Hofer, K. Wysocki, and E. Zehnder. “Properties of pseudoholomorphic curves in symplectizations I: Asymptotics.” Ann. I. H. P. Analyse Non Linéaire 13 (1996), 337–379.

    MathSciNet  MATH  Google Scholar 

  19. H. Hofer, K. Wysocki, and E. Zehnder. “Properties of pseudoholomorphic curves in symplectizations II: Embedding controls and algebraic invariants.” Geometrical and Functional Analysis 5, No. 2 (1995), 270–328.

    Article  MathSciNet  MATH  Google Scholar 

  20. H. Hofer, K. Wysocki, and E. Zehnder. “Unknotted periodic orbits for Reeb flows on the 3-sphere.” Topological Methods in Nonlinear Analysis, Journal of the Juliusz Schauder Center 7 (1996), 219–244.

    MathSciNet  MATH  Google Scholar 

  21. H. Hofer, K. Wysocki, and E. Zehnder. “The dynamics on a strictly convex energy surface in R 4”. To appear in Ann. of Math.

    Google Scholar 

  22. H. Hofer, K. Wysocki, and E. Zehnder. “A characterization of the tight three-sphere II”. Preprint.

    Google Scholar 

  23. H. Hofer, K. Wysocki, and E. Zehnder. “Properties of pseudoholomorphic curves in symplectizations V: Fredholm theory with singularities”. In preparation.

    Google Scholar 

  24. H. Hofer and E. Zehnder. Hamiltonian Dynamics and Symplectic Invariants. Birkhäuser, 1994.

    Google Scholar 

  25. J. Martinet. “Formes de contact sur les variétés de dimension 3.” Springer LNM 209 (1971), 142–163.

    MathSciNet  Google Scholar 

  26. D. McDuff. “The local behavior of J-holomorphic curves in almost complex 4-manifolds.” J. Diff. Geom. 34 (1991), 143–164.

    MathSciNet  MATH  Google Scholar 

  27. M. Micallef and B. White. “The structure of branch points in minimal surfaces and in pseudoholomorphic curves.” Ann. of Math. 141 (1994), 35–85.

    Article  MathSciNet  Google Scholar 

  28. A. Nijenhuis and W. Woolf. “Some integration problems in almost-complex and complex manifolds.” Annals of Mathematics 77, No. 3 (1963), 424–489.

    Article  MathSciNet  MATH  Google Scholar 

  29. M. Schwarz. Cohomology Operations from S 1-Cobordisms in Floer Homology. Ph.D thesis. ETH-Zürich, 1996.

    Google Scholar 

  30. J.-C. Sikorav. “Singularities of J-holomorphic curves.” Math. Zeit. 226 (1997), 359–373.

    Article  MathSciNet  MATH  Google Scholar 

  31. R. Ye. “Filling by holomorphic disks in symplectic 4-manifolds.” Trans. Amer. Math. Soc. 350, 1 (1998), 213–250.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Basel AG

About this chapter

Cite this chapter

Hofer, H., Wysocki, K., Zehnder, E. (1999). Properties of Pseudoholomorphic Curves in Symplectizations III: Fredholm Theory. In: Escher, J., Simonett, G. (eds) Topics in Nonlinear Analysis. Progress in Nonlinear Differential Equations and Their Applications, vol 35. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8765-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8765-6_18

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9764-8

  • Online ISBN: 978-3-0348-8765-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics