Skip to main content

Search for potent immunostimulating agents from plants and other natural sources

  • Chapter
Immunomodulatory Agents from Plants

Part of the book series: Progress in Inflammation Research ((PIR))

Abstract

Immunostimulants [1, 2] or immunopotentiators are drugs leading predominantly to a non-specific stimulation of immunological defence mechanisms. Most of them are not real antigens but antigenomimetics or so-called mitogens. Non-specific and non-antigen dependent stimulants do not affect immunological memory cells and, since their pharmacological efficacy fades comparatively quickly, they have to be administered either in intervals or continuously. Some immunostimulants may also stimulate T-suppressor cells and thereby reduce immune resistance, hence the term immunomodulation or immunoregulation, denoting any effect on, or change of, immune responsiveness is also very often used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wagner H, Proksch A (1985) Immunostimulatory drugs of fungi and higher plants. In: N Farnsworth, H Wagner (eds): Economic and medicinal plant research, Vol 1. Academic Press, London, 113–153

    Google Scholar 

  2. Wagner H (1990) Search for plant derived natural compounds with immunostimulatory activity (recent advances). Pure & Appl Chem 62: 1217–1222

    Article  CAS  Google Scholar 

  3. Drews J (1980) Möglichkeiten der Immunstimulierung. Swiss Pharma 2:9 (49)

    Google Scholar 

  4. Seiler FR, Hofstaetter T, Kolar C, Kraemer HP, Schorlemmer HU, Sedlacek HH (1985) Immunmodulation: Immunstimulation and Immunsuppression In: Ruschig H (ed): Arzneimittel Fortschritte 1972–1985. VCH-Verlag, Weinheim, 1367–1433

    Google Scholar 

  5. Freund J (1956) The mode of action of immunologic adjuvants Adv Tuberc Res 7: 130

    Google Scholar 

  6. Gupta RK, Siber GR (1995) Adjuvants for human vaccines - current status, problems and future prospects. Vaccine 13: 1263–1276

    Article  PubMed  CAS  Google Scholar 

  7. Wagner H, Jurcic K (1991) In: Dey PM, Harborne JB, Hostettmann K (eds): Methods in plant biochemistry,Vol 6. Academic Press, London, New York, 195–217

    Google Scholar 

  8. Weir DM (1978) Application of immunological methods. Handbook of experimental immunology,3rd ed. Blackwell Scientific Publications, Oxford

    Google Scholar 

  9. Brandt I (1967) Studies on the phagocytic activity of neutrophilic leukocytes. Scand J Haematol (Suppl 2)

    Google Scholar 

  10. Wagner H, Jurcic K (1996) A new flowcytometric assay for measuring the leukocyte phagocytosis activity of immunostimulating plant extracts, polysaccharides and various low molecular weight compounds. Phytomedicine 3 (Suppl 1): 31

    Google Scholar 

  11. Allen RC (1981) In: DeLuca MD, Mc Elroy WD (eds): Bioluminescence and chemoluminescence, Vol 3. Academic Press, New York, London, 63

    Google Scholar 

  12. D’Onofrio C, Lohmann-Matthes ML (1984) Chemoluminescence of macrophages depends upon their differentiation stage: Dissociation between phagocytosis and oxygen radical release. Immunbiology 167: 414–430

    Article  Google Scholar 

  13. Biozzi G, Benacerraf B, Halpern BN (1953) Quantitative study of the granulopectic activity of R.E.S. II. A study of the kinetics of the granulopectic activity of the R.E.S. in relation to the dose of carbon injected. Relationship between the weight of the organs and their activity. Brit J Expo Pathol 34: 441

    CAS  Google Scholar 

  14. Kabat EA, Mayer MM (1961) In: Thomas CC (ed): Kabat and Mayer’s experimental immunochemistry,2nd ed., chapter 4, Springfield, 133–239

    Google Scholar 

  15. Platts-Mills TAE, Ishizaka KJ (1974) Activation of the alternate pathway of human complements by rabbit cells. J Immunol 113: 348–357

    PubMed  CAS  Google Scholar 

  16. Nakamura S, Sung SSJ, Bjorndal JM, Fu SM (1989) Human T-cell activation. IV T-cell activation and proliferation via early activation antigen EA-1. J Exp Mod 169: 677–689

    Article  CAS  Google Scholar 

  17. Meerpohl HG, Lohmann-Matthes ML, Fischer H (1976) Studies on the activation of mouse bone-marrow derived macrophages by the macrophage cytotoxicity factor (MCF). Eur J Immunol 6: 213–217

    Article  PubMed  CAS  Google Scholar 

  18. Luettig B, Steinmüller C, Gifford GE, Wagner H, Lohmann-Matthes ML (1989) Macrophage activation by the polysaccharide arabinogalactan isolated from plant cell cultures of Echinacea purpurea. J Nat Canc Institute 81: 669–675

    Article  CAS  Google Scholar 

  19. Stimpel M, Proksch A, Wagner H, Lohmann-Matthes ML (1984) Macrophage activation and induction of macrophage cytotoxicity by purified polysaccharide fractions from the plant Echinacea purpurea. Infections and Immunity 46: 845–849

    CAS  Google Scholar 

  20. Roesler I, Steinmüller Ch, Kiderlen A, Emmendörffer AC, Wagner H, Lohmann-Matthes ML (1991) Application of purified polysacharides from cell cultures of the plant Echinacea purpurea to mice mediates protection against systemic infection with Listeria monocytogenes and Candida albicans. Int J Immunopharmac 13: 27–37

    Article  CAS  Google Scholar 

  21. Wagner H, Kreher B, Jurcic K (1988) In vitro stimulation of human granulocytes and lymphocytes by pico-and femtogram quantities of cytostatic agents. ArzneimForschlD rug Res 38: 237–275

    Google Scholar 

  22. Eisemann K (1996) Methodenentwicklung und Screening von Pflanzenextrakten und isolierten Naturstoffen auf immunmodulierende Wirkung. PhD-Thesis, University of Munich, Germany

    Google Scholar 

  23. Lindequist U, Teuscher E (1985) Pflanzliche und mikrobielle Wirkstoffe als Immunmodulatoren. Pharmazie 40: 10–16

    PubMed  CAS  Google Scholar 

  24. Möse JR (1963) Versuche über die Wirksamkeit von Artistolochiasäure. Planta Med 11: 72–91

    Article  Google Scholar 

  25. Möse JR (1966) Weitere Untersuchungen über die Wirkung der Aristolochia-Säure. Arzneimittel-Forsch 16: 118–122

    Google Scholar 

  26. Sieving H, Müller HJ (1981) Gegensätzliche Wirkung von Glukokortikoiden und Aristolochiasäure auf das Immunozytoadhärenzphänomen. Arzneimittel-Forsch 31: 1260–1262,31(II)

    Google Scholar 

  27. Lemperle G (1972) Funktion des retikuloendothelialen Systems bei chirurgischen Erkrankungen. Habil-Schrift der Med Fakultät, Universität Freiburg, Germany

    Google Scholar 

  28. Kluthe R, Vogt A, Batsford S (1982) Doppelblindstudie zur Beeinflussung der Phagozytosefähigkeit von Granulozyten durch Aristolochiasäure. Arzneim-Forsch 32: 443–445

    CAS  Google Scholar 

  29. Mori M, Nakamoto S, Arashima Y, Seno S (1979) Protective effect of Cepharanthine on suppression of hemopoesis by antitumor agents. Gato Kagaku Ryoho 6: 175

    CAS  Google Scholar 

  30. Wagner H, Kreuzkamp B, Jurcic K (1985) Die Alkaloide von Uncaria tomentosa und ihre Phagozytosesteigernde Wirkung. Planta Med 419–423

    Google Scholar 

  31. Schwarz JA, König P, Scheuden PG (1974) Beeinflussung der humoralen Immunantwort durch Vincristinsulfat und Vincristin/Cyclophosphanoid. Verb Dtsch Ges Inn Med 80: 1597

    CAS  Google Scholar 

  32. Atherton AC, Burke DC (1978) The effects of some different metabolic inhibitors on interferon superinduction. J Gen Virol 41: 229–237

    Article  PubMed  CAS  Google Scholar 

  33. Zheng QY, Kiranowska M, Sadlik JR, Hadden JW (1987) Purified podophyllotoxins (CPH-86) inhibits lymphocyte proliferation but augments macrophage proliferation. J Immunopharmac 9: 539

    Article  CAS  Google Scholar 

  34. Abdul KM, Ramchender RP (1995) Potentiation of macrophage bactericidal activity. Immunopharmacology 30: 231

    Article  PubMed  CAS  Google Scholar 

  35. Bauer R, Remiger P, Jurcic K, Wagner H (1989) Beeinflussung der Phagozytose-Aktivität durch Echinacea-Extrakte. Z Phytother 10: 43–48

    Google Scholar 

  36. Pettit GR, Herald CL, Doubek DL, Herald DL (1982) Isolation and Structure of Bryostatin 1. J Am Chem Soc 104: 6846–6848

    Article  CAS  Google Scholar 

  37. Schuchter LM, Esa AH, May S, Laulis MK, Pettit GR, Hess AD (1991) Successful treatment of murine melanoma with Bryostatin 1. Cancer Res 51 (2): 682–687

    PubMed  CAS  Google Scholar 

  38. Eisemann K, Totola A, Jurcic K, Pettit GR, Wagner H (1995) Bryostatins 1, 2 and 5 activate human granulocytes and lymphocytes: in vitro and in vivo studies. Pharm Pharmacol Lett 1: 45–48

    Google Scholar 

  39. May WS, Sharkis SJ, Esa AH, Gebbia V, Kraft AS, Pettit GR, Sensenbrenner LL (1987) Antineoplastic bryostatins are multipotential stimulators of human hemotopoietic progenitor cells. Proc Natl Acad Sci USA 84: 8483

    Article  PubMed  CAS  Google Scholar 

  40. Kraft AS, Reeves JA, Ashendel CL (1988) Differing modulation of proteinkinase C by bryostatin 1 and phorbolesters in IB6 mouse epidermal cells. J Biol Chem 263: 8437

    PubMed  CAS  Google Scholar 

  41. Sachs L (1982) Normal development programms in myeloid leukemia: Regulatory proteins in the control of growth and differentiation. Cancer Surveys 1: 321–342

    Google Scholar 

  42. The chemotherapy of malignant diseases (1989) In: Eckhart S, Holzner JH, Nagel GA (eds): Contribution to Oncology. Karger, Basel

    Google Scholar 

  43. Atkinson DC, Hicks R (1975) The antiinflammatory activity of irritants. Agents and Actions 5: 239–249

    Article  PubMed  CAS  Google Scholar 

  44. Lis H, Sharon N (1973) The biochemistry of plant lectins (Phytohemagglutinins). Ann Rev Biochem 42: 541

    Article  PubMed  CAS  Google Scholar 

  45. Wagner H, Willer F, Samtleben R (1994) Lektine and Polysaccharide - die Wirkprinzipien der Urtica-Wurzel? In: G Boos (ed): Benign Prostatahyperplasie. pmi-Verlag, Frank-furt, 115–122

    Google Scholar 

  46. Kojima Y (1980) Antineoplastic effect of TGDS synthetic acid polysaccharides on human cervical cancer Experimental therapy of HeLa-S3 cell cancer transplanted to nude mice. Nippon Monaikei Gakhai haishi 19 (4): 261

    CAS  Google Scholar 

  47. McGrath MS, Santulli S, Gaston I (1999) Effects of GLQ 233 TM on HIV-replication in human monocyte/macrophages chronically infected in vitro with HIV. AIDS Res Human Retroviruses 6: 1039–1043

    Google Scholar 

  48. Byers VS, Levin AS, Waites LA, Starrett BA, Mayer RA, Clogg JA, Price MR, Robins RA, Delaney M, Baldwin RW (1990) A phase I/II study of trichosanthin treatment of HIV disease. AIDS 4: 1189–1196

    Article  PubMed  CAS  Google Scholar 

  49. Gerhäuser C, Samtleben R, Tau GT, Pezzuto JM, Lottspeich F, Wagner H (1993) Peponin, a new ribosome-inactivating protein isolated from the seeds of Cucurbita pepo L inhibits human immunodeficiency virus type I reverse transcriptase. Pharm Pharmacological Lett 3: 71–75

    Google Scholar 

  50. Wachinger M, Samtleben R, Gerhäuser C, Wagner H, Erfle V (1993) Bryodin, a single ribosome-inactivating protein selectively inhibits the growth of HIV-1 infected cells and reduces HIV-1 production. Res Exp Med 193: 1–12

    Article  CAS  Google Scholar 

  51. Ng TB, Chan WY, Yeung HW (1992) Proteins with abortifacient ribosome inactivating, immunmodulatory, antitumor and anti-AIDS activities from Cucurbitaceae plants. Gen Pharmac 23: 575–590

    Article  CAS  Google Scholar 

  52. Whistler RL, Bushway AA, Singh PP, Nakahara W, Tokuzen R (1976) Noncytotoxic antitumor polysaccharides. Adv Carbohydr Chem Biochem 32: 235–275

    Article  PubMed  CAS  Google Scholar 

  53. Chihara L, Hamuro J, Maeda YY, Shiio T, Surija T (1987) In: Niebugs NE (ed): Immunbiology of cancer and AIDS. AR Liss Inc, New York, 423–438

    Google Scholar 

  54. Franz G (1989) Polysaccharides in Pharmacy: Current Applications and Future Concepts. Planta Med 55: 493–497

    Article  PubMed  CAS  Google Scholar 

  55. Wagner H, Stuppner H, Schäfer W, Zenk M (1988) Immunological active polysaccharides of Echinacea purpurea cell cultures. Phytochemistry 27: 119–126

    Article  CAS  Google Scholar 

  56. Puhlmann J, Knaus U, Tubaro L, Schäfer W, Wagner H (1992) Immunologically active metallic ion-containing polysaccharides of Achyrocline satureoides. Phytochemistry 31: 2617–2621

    Article  PubMed  CAS  Google Scholar 

  57. Wagner H, Willer F, Samtleben R and Boos G (1994) Search for the antiprostatic principle of stinging nettle (Urtica dioica) roots. Phytomedicine 1: 213–224

    Article  PubMed  CAS  Google Scholar 

  58. Gerber P, Dutcher JD, Adams EV, Sherman JH (1958) Protective effect of seaweed extracts for chicken embryos infected with influenza B or mumps virus. Proc Soc Exp Biol Med 99: 590–593

    PubMed  CAS  Google Scholar 

  59. Nakashima H, Kido Y, Kobayashi N, Motoki Y, Neushul M, Yamamoto N (1987) Purifications and characterization of an avian myoblastosis and human immunodeficiency virus reverse transcriptase inhibitor sulfated polysaccharides extracted from sea algae. Antimicrob Agents Chemoth 31: 1524–1528

    Article  CAS  Google Scholar 

  60. Ito M, Baba M, Sato A, Pauwels R, de Clercq E, Shigeta S (1987) Inhibitory effect of dextran sulfate and heparin on the replication of human immunodeficiency virus (HIV) in vitro. Antiviral Res 7: 361–367

    Article  PubMed  CAS  Google Scholar 

  61. Yoshida O, Nakashima H, Yoshida T, Kaneko Y, Yamamoto I, Matsuzaki K, Uryu T, Yamamoto N (1988) Sulfation of the immunomodulating polysaccharide lentinan: a novel strategy for antivirals to human immunodeficiency virus (HIV). Biochem Pharmacol 37: 2887–2891

    Article  PubMed  CAS  Google Scholar 

  62. Tochikura St, Nakashima H, Kaneko Y, Kobayashi N, Yamamoto N (1987) Suppression of human immunodeficiency virus replication by 3’-azido-3’-deoxythymidine in various human hematopoietic cell lines in vitro: Augmentation of the effect by lentinan. Jpn J Cancer Res (Gann) 78: 583–589

    PubMed  CAS  Google Scholar 

  63. Kaneko Y, Yoshida O, Nakagawa R, Yoshida T, Dato M, Ogihara S, Shioya S, Matsuzawa Y, Nagashima N et al (1990) Inhibition of HIV-1 infectivity with curdlan sulfate in vitro. Biochem Pharmacol 39: 793–797

    Google Scholar 

  64. Biesert L, Suhartono H, Winkler I, Meichsner C, Helsberg M, Hewlett G, Klimetzek V, Moiling K, Schlumberger HD, Schrinner E et al (1988) Inhibition of HIV and virus replication by polysulphated polyxylan: Hoe/Bay 946, a new antiviral compound. AIDS 2: 449–457

    Google Scholar 

  65. Vinegar R, Truax JF, Selph JL (1976) Quantitative studies of the pathway to acute carrageenan inflammation. Fed Proc 35 (13): 2447–2456

    PubMed  CAS  Google Scholar 

  66. Calhoun W, J Chang, RP Carlson (1987) Effect of selected antiinflammatory agents and other drugs on zymosan arachidonic acid, PAF and carrageenan induced paw edema in the mouse. Agents Actions 21 (3–4): 306–309

    Article  PubMed  CAS  Google Scholar 

  67. Torisu M, Hayashi Y, Ishimitu T, Fujimura T, Iwasaki K, Katano M, Yamamoto H, Kimura Y, Takesue M, Kondo M, Nomoto K (1990) Significant prolongation of disease-free period gained by oral polysaccharide K (PSK) administration after curative surgical operation of colorectal cancer. Cancer Immunol Imunother 31: 261–268

    Article  CAS  Google Scholar 

  68. Pereira Crott LS, Lucisano YM, Siila CL, Barbossa JE (1993) The role of complement system in the neutrophil functions stimulated in vitro by an alkali-insoluble cell wall fraction of Paracoccidioides brasisliensis. Journal of Medical and Veterinary Mycology 31: 17–27

    Article  Google Scholar 

  69. Kraus S, Wagner H (1998) UPS I, a chemotactic polysaccharide isolated from Urtica dioica. Phytomedicine; in press

    Google Scholar 

  70. Silva CL, Alves LMC, Figueiredo F (1994) Involvement of cell wall glucans in the genesis and persistence of the inflammatory reaction caused by the fungus Paracoccidioides brasiliensis. Microbiology 140: 1189–1194

    Article  PubMed  CAS  Google Scholar 

  71. Damas J, Remacle-Volon G, Deflandre E (1986) Further studies of the mechanism of counter irritation by turpentine. Naunyn-Schmiedeberg’s Arch Pharmacol 332 (2): 196–200

    Article  CAS  Google Scholar 

  72. Thornton BP, Vetvicka V, Pitman M, Goldman RC, Ross GD (1996) Analysis of the sugar specificity and molecular location of the beta-glucan-binding lectin site of complement receptor type 3 (CD11b/CD18). J Immunol 156(3): 1235–1246

    PubMed  CAS  Google Scholar 

  73. Wang WJ, Zhu XY (1989) The antiinflammatory and immunostimulation activities of S-4001, a polysaccharide isolated from Lei Wan Polyporus-Mylittae. Acta Pharm Sin 24(2): 151–154

    CAS  Google Scholar 

  74. Dong ZM, Murphy JW (1995) Intravascular cryptococcal culture filtrate (CneF) and its major component, glucuronoxylomannan, are potent inhibitors of leukocyte accumulation. Infect Immun 63(3): 770–778

    PubMed  CAS  Google Scholar 

  75. Dong ZM, Murphy JW (1997) Cryptococcal polysaccharides bind to CD18 on human neutrophile. Infect Immun 65(2): 557–563

    PubMed  CAS  Google Scholar 

  76. Rocha e Silva M, Cavalcanti RQ, Reis ML (1969) Anti-inflammatory action of sulfated polysaccharides. Biochem Pharmacol 18(6): 1285–1295

    Article  Google Scholar 

  77. Abe S, Takahashi K, Tsubouchi J, Aida K, Yamazaki M, Mizuno D (1984) Different local therapeutic effects of various polysaccharides on MH-134 hepatoma in mice and its relation to inflammation induced by the polysaccharides. Gann 75(5): 459–465

    PubMed  CAS  Google Scholar 

  78. Ferreira SH, Lorenzetti BB, Correa FMA (1978) Central and peripheral antialgesic action of aspirin-like drugs. Eur J Pharm 53: 39–48

    Article  CAS  Google Scholar 

  79. Bhattacharya SK, Das N, Rao PJ (1987) Effect of pre-existing inflammation on carrageenan-induced paw oedema in rats. J Pharm Pharmacol 39(10): 854–856

    Article  PubMed  CAS  Google Scholar 

  80. Stenberg VI, Bouley MG, Katz BM, Lee KJ, Parmar SS (1990) Negative endocrine control system for inflammation in rats. Agents Actions 29(3–4): 189–195

    Article  PubMed  CAS  Google Scholar 

  81. Freyburger G, Larrue F, Manciet G, Lorient-Roudaut MF, Larrue J, Boisseau MR (1987) Hemorheological changes in elderly subjects-effect of pentosan polysulfate and possible role of leukocyte arachidonic acid metabolism. Thromb Haemost 57(3): 322–325

    PubMed  CAS  Google Scholar 

  82. Panossian AG (1996) Personal communication

    Google Scholar 

  83. Ukai S, Hara C, Kiho T (1982) Polysaccharides in fungi IX, a beta-D-glucan from alka-line extract of Dictyophora indusiata, Fisch. Chem Pharm Bull 30(6): 2147–2154

    Article  CAS  Google Scholar 

  84. Damas J, Remacle-Volon G (1982) Kinins and edema induced by different carrageenans (author’s transi). Pharmacol 13(2): 225–239

    CAS  Google Scholar 

  85. Salvemini D, Wang Z-Q, Wyatt PS, Bourdon DM, Marino MH, Manning PT, Currie MG (1996) Nitric oxide: a key mediator in the early and late phase of carrageenaninduced rat paw inflammation. Br J Pharm 118: 829–838

    Article  CAS  Google Scholar 

  86. Melier ST, Cummings CP, Traub RJ, Gebhart GF (1994) The role of nitric oxide in the development and maintenance of the hyperalgesia produced by intraplantar injection of carrageenan in the rat. Neuroscience 60(2): 367–374

    Article  Google Scholar 

  87. Puhlman J (1989) Immunologisch aktive Polysaccharide aus den Herbadrogen von Achyrocline satureioides (Lam) DC und Arnica montana L sowie aus Arnica montana L Zellkulturen. PhD Thesis, University of Munich, Germany

    Google Scholar 

  88. Kiho T, Sakai M, Ukai S, Hara C, Tanaka Y (1985) Anti-inflammatory effect of the polysaccharide from the fruit bodies of Auricularia species. Carbohydr Res 142(2): 344–351

    Article  CAS  Google Scholar 

  89. Damas J, Volon G (1979) Sur l’inhibition de l’oedème à la carragénine par la carragénine elle-même [Inhibition of carrageenan edema by carrageenan itself]. CR Soc Biol 173(3): 637–643

    CAS  Google Scholar 

  90. Hara C, Kiho T, Tanaka Y, Ukai S (1982) Anti-inflammatory activity and conformational behavior of a branched (1–3)-beta-D-glucan from an alkaline extract of Dictyophora indusiata Fisch. Carbohydr Res 110(1): 77–88

    Article  PubMed  CAS  Google Scholar 

  91. Hara C, Ukai S (1995) Kinugasatake, Dictyophora indusiata Fisch: Biological activities. Food Reviews International 11(1): 225–230

    Article  CAS  Google Scholar 

  92. Fujiwara T, Takeda T, Ogihara Y, Shimizu M, Nomura T, Tomita Y (1984) Further studies on the structure of polysaccharides from the bark of Melia azadirachta. Chem Pharm Bull 32(4): 1385–1391

    Article  CAS  Google Scholar 

  93. Saito K, Nishijima M, Ohno N, Nagi N, Yadomae T, Miyazaki T (1992) Activation of complement and Limulus coagulation systems by an alkali-soluble glucan isolated from Omphalia lapidescens and its less-branched derivatives (Studies on fungal polysaccharide XXXIX). Chem Pharm Bull 40(5): 1227–1230

    Article  CAS  Google Scholar 

  94. Suzuki, T, Ohno N, Saito K, Yadomae T (1992) Activation of the complement system by (1–3)-beta-D-glucans having different degrees of branching and different ultrastructures. J Pharmacobio-Dyn 15(6): 277–285

    Article  PubMed  CAS  Google Scholar 

  95. Ohno N, Saito K, Nemoto J, Kaneko S, Adachi Y, Nishijima M, Miyazaki T, Yadomae T (1993) Immunopharmacological characterization of a highly branched fungal (1–3)beta-D-glucan OL-2 isolated from Omphalia lapidescens. Biol Pharm Bull 16(4): 414–419

    Article  PubMed  CAS  Google Scholar 

  96. Knaus U (1989) Komplementaktive Verbindungen aus der grünlippigen Muschel Perna canaliculus (Gmelin) sowie niederen and höheren Pflanzen. lanzen. PhD Thesis, Ludwig-Maximilians-Universität, München, Germany

    Google Scholar 

  97. Miller TE, Dodd J, Ormrod DJ, Geddes R (1993) Anti-inflammatory activity of glycogen extracted from Perna canaliculus (NZ green-lipped mussel). Agents Actions 38(SPEC CONF ISSUE): C139–C142

    Article  PubMed  CAS  Google Scholar 

  98. Tomoda M, Gonda R, Ohara N, Shimizu N, Shishido C, Fujiki Y (1994) A glucan having reticuloendothelial system-potentiating and anti-complementary activities from the tuber of Pinellia ternata. Biol Pharm Bull 17(6): 859–861

    Article  PubMed  CAS  Google Scholar 

  99. Gonda R, Tomoda M, Shimizu N, Ohara N, Takagi H, Hoshino S (1994) Characterization of an acidic polysaccharide with immunological activities from the tuber of Pinel-lia ternata. Biol Pharm Bull 17(12): 1549–1553

    Article  PubMed  CAS  Google Scholar 

  100. Zhang DY, Mori M, Hall IH, Lee KH (1991) Anti-inflammatory agents V. Amylose from Pinellia ternata. Int J Pharmacognosy 29(1): 29–32

    Article  CAS  Google Scholar 

  101. Sendl A (1992) Chemisch-Analytische and Pharmakologische Untersuchungen von Allium ursinum L and Sedum telephium L. PhD Thesis, Ludwig-Maximilians-Universität, München, Germany

    Google Scholar 

  102. Kato M, Takeda T, Ogihara Y, Shimizu M, Nomura T, Torvita Y (1985) Studies on the structure of polysaccharide from Tetragonia tetragonoides I. Chem Pharm Bull 33(9): 3675–3680

    Article  CAS  Google Scholar 

  103. Wagner H, Willer F, Kreher B (1989) Biologisch aktive Verbindungen aus dem Wasserextrakt von Urtica dioica. Planta Med 55(5): 452–454

    Article  PubMed  CAS  Google Scholar 

  104. Willer F (1992) Chemie und Pharmakologie der Polysaccharide und Lektine von Urtica dioica (Lin). PhD Thesis, Ludwig-Maximilians-Universität, München, Germany

    Google Scholar 

  105. Hodgson I (1991) Carbohydrate-based therapeutics. Biotechnology 9: 609–613

    Article  PubMed  CAS  Google Scholar 

  106. Kraus J (1990) Biopolymere mit antitumoraler und immunmodulierender Wirkung. Pharmazie in unserer Zeit 19(4): 157–164

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Basel AG

About this chapter

Cite this chapter

Wagner, H., Kraus, S., Jurcic, K. (1999). Search for potent immunostimulating agents from plants and other natural sources. In: Wagner, H. (eds) Immunomodulatory Agents from Plants. Progress in Inflammation Research. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8763-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8763-2_1

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9763-1

  • Online ISBN: 978-3-0348-8763-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics