Skip to main content

The effect of fatty acid composition and retinoic acid on human keratinocyte plasma membrane viscosity

  • Chapter
Fatty Acids and Inflammatory Skin Diseases

Part of the book series: Progress in Inflammation Research ((PIR))

Abstract

Lipids, specifically fatty acids and their derivatives, play important and widely varying roles in human epidermis. They are key building blocks in all membranes and in the structures forming the outer layers of skin, and they undergo an active metabolic process that provides many compounds other than the important β-oxidation product, acetyl coenzyme A (CoA). This review focuses on the metabolism of these lipids in mammalian tissues, in the skin and its epidermal component, and in human epidermal cells grown in culture (keratinocytes).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Vance D, Vance J (eds) (1985) Biochemistry of lipids and membranes. BenjaminJCum-mings, Menlo Park, CA

    Google Scholar 

  2. Bohinski R (ed) (1976) Modern concepts in biochemistry. Allyn and Bacon, Boston

    Google Scholar 

  3. Chapkin RS, Ziboh VA, Marcelo CL, Voorhees JJ (1986) Metabolism of essential fatty acids by human epidermal enzyme preparations: evidence of chain elongation. J Lipid Res 27: 945–954

    PubMed  CAS  Google Scholar 

  4. Marcelo CL, Duell EA, Rhodes, LM, Dunham WR (1992) An in vitro model of essential fatty aid deficiency. J Invest Dermatol 99: 703–708

    Article  PubMed  CAS  Google Scholar 

  5. Street JM, Johnson DW, Singh H, Poulos A (1989) Metabolism of saturated and polyun-saturated fatty acids by normal and Zellweger syndrome skin fibroblasts. Biochem J 260: 647–655

    PubMed  CAS  Google Scholar 

  6. Madsen P, Rasmussen HH, Leffers H, Honore B, Celis JE (1992) Molecular cloning and expression of a novel keratinocyte protein [psoriasis-associated fatty acid-binding protein (PA-FABP)] that is highly up-regulated in psoriatic skin and that shares similarity to fatty acid-binding proteins. J Invest Dermatol 99: 299–305

    Article  PubMed  CAS  Google Scholar 

  7. Schurer NY, Bass NM, Jin S, Manning JA, Pillai S, Williams ML (1993) High-affinity fatty acid-binding activity in epidermis and cultured keratinocytes is attributable to high-molecular-weight and not low-molecular-weight fatty acid-binding proteins. J Invest Dermatol 100: 82–86

    Article  PubMed  CAS  Google Scholar 

  8. Siegenthaler G, Hotz R, Chatellard-Gruaz D, Didierjean L, Hellman U, Saurat JH (1994) Purification and characterization of the human epidermal fatty acid-binding protein: localization during epidermal cell differentiation in vivo and in vitro. Biochem J 302: 363–371

    PubMed  CAS  Google Scholar 

  9. Masouye I, Saurat JH, Siegenthaler G (1996) Epidermal fatty-acid-binding protein in psoriasis, basal and squamous cell carcinomas: an immunohistological study. Dermatology 192: 208–213

    Article  PubMed  CAS  Google Scholar 

  10. Long VJ, Yardley HJ (1972) Phospholipase A activity in the epidermis. J Invest Dermatol 58: 148–154

    Article  PubMed  CAS  Google Scholar 

  11. Finnen MJ, Lovell CR (1991) Purification and characterization of phospholipase A2from human epidermis. Biochem Soc Trans 19: 91s

    PubMed  CAS  Google Scholar 

  12. Bergers M, Verhagen B, Jongeruis M, van der Kerkhof P (1988) A unique phospholipase A2 in human epidermis: its physiologic function and its level in certain dermatoses. J Invest Dermatol 90: 23–25

    Article  PubMed  CAS  Google Scholar 

  13. Andersen S, Sjursen W, Laegreid A, Volden G, Johansen B (1994) Elevated expression of human nonpancreatic phospholipase A2 in psoriatic tissue. Inflammation 18: 1–12

    Article  PubMed  CAS  Google Scholar 

  14. Kast R, Furstenberger G, Marks F (1991) Activation of a keratinocyte phospholipase A2 by bradykinin and beta-phorbol 12-myristate 13-acetate. Evidence for a receptor-GTP-binding protein versus a protein kinase C mediated mechanism. Eur J Biochem 202: 941–950

    Article  PubMed  CAS  Google Scholar 

  15. Nanney LB, Gates R, Todderud G, King L, Carpenter G (1992) Altered distribution of phospholipase C gamma-1 in benign hyperproliferative diseases. Cell Growth Differ 3: 233–239

    PubMed  CAS  Google Scholar 

  16. Punnonen K, Denning M, Lee E, Li L, Rhee S, Yuspa S (1993) Keratinocyte differentiation is associated with changes in the expression of phospholipase C isozymes. J Invest Dermatol 101: 719–726

    Article  PubMed  CAS  Google Scholar 

  17. Singh H, Derwas N, Poulos A (1987) Beta-oxidation of very-long-chain fatty acids and their coenzyme A derivatives by human skin fibroblasts. Arch Biochem Biophys 254: 526–533

    Article  PubMed  CAS  Google Scholar 

  18. Jakobs BS, Wanders RJ (1991) Conclusive evidence that very-long-chain fatty acids are oxidized exclusively in peroxisomes in human skin fibroblasts. Biochem Biophys Res Commun 178: 842–847

    Article  PubMed  CAS  Google Scholar 

  19. Singh H, Brogan M, Johnson D, Poulos A (1992) Peroxisomal beta-oxidation of branched chain fatty acids in human skin fibroblasts. J Lipid Res 33: 1597–1605

    PubMed  CAS  Google Scholar 

  20. Schmidt A, Vogel RL, Witherup KM, Rutledge SJ, Pitzenberger SM, Adam M, Rodan GA (1996) Identification of fatty acid methyl ester as naturally occurring transcription-al regulators of the members of the peroxisome proliferator-activated receptor family. Lipids 31: 1115–1124

    Article  PubMed  CAS  Google Scholar 

  21. Singh H, Derwas N, Poulos A (1987) Very long chain fatty acid beta-oxidation by sub-cellular fractions of normal and Zellweger syndrome skin fibroblasts. Arch Biochem Biophys 257: 302–314

    Article  PubMed  CAS  Google Scholar 

  22. Wanders RJ, van Roermund CW, van Wijland MJ, Schutgens RB, Heikoop J, van den Bosch H, Schram AW, Tager JM (1987) Peroxisomal fatty acid beta-oxidation in relation to the accumulation of very long chain fatty acids in cultured skin fibroblasts from patients with Zellweger syndrome and other peroxisomal disorders. J Clin Invest 80: 1778–1783

    Article  PubMed  CAS  Google Scholar 

  23. Christensen E, Hagve TA, Christophersen BO (1988) The Zellweger syndrome: deficient chain-shortening of erucic acid [22: 1 (n-9)] and adrenic acid [22: 4 (n-6)] in cultured skin fibroblasts. Biochim Biophys Acta 959: 134–142

    Article  PubMed  CAS  Google Scholar 

  24. Lazo O, Contreras M, Bhushan A, Stanley W, Singh I (1989) Adrenoleukodystrophy: impaired oxidation of fatty acids due to peroxisomal lignoceroyl-CoA ligase deficiency. Arch Biochem Biophys 270: 722–728

    Article  PubMed  CAS  Google Scholar 

  25. Raza H, Chung WL, Mukhtar H (1991) Specific high-affinity binding of fatty acids to epidermal cytosolic proteins. J Invest Dermatol 97: 323–326

    Article  PubMed  CAS  Google Scholar 

  26. Watanabe R, Fujii H, Odani S, Sakakibara J, Yamamoto A, Ito M, Ono T (1994) Molecular cloning of a cDNA encoding a novel fatty acid-binding protein from rat skin. Biochem Biophys Res Commun 200: 253–259

    Article  PubMed  CAS  Google Scholar 

  27. Jakobs BS, Wanders RJ (1996) Impaired peroxisomal fatty acid oxidation in human skin fibroblasts with a mitochondrial acylcarnitineJcarnitine translocase deficiency. J Inherit Metab Dis 19: 185–187

    Article  PubMed  CAS  Google Scholar 

  28. Faergeman NJ, Knudsen J (1997) Role of long-chain fatty acyl-CoA esters in the regulation of metabolism and in cell signaling. Biochem J 323: 1–12

    PubMed  CAS  Google Scholar 

  29. Winder WW,. Wilson HA, Hardie DG, Rasmussen BB, Hutber CA, Call GB, Clayton RD, Conley LM, Yoon S, Zhou B (1997) Phosphorylation of rat muscle acetyl-CoA car-boxylase by AMP-activated protein kinase and protein kinase A. J Applied Physiol 82: 219–225

    Article  CAS  Google Scholar 

  30. Velasco G, Geelen MJ, Guzman M (1997) Control of hepatic fatty acid oxidation by 5’-AMP-activated protein kinase involves a malonyl-CoA-dependent and a malonyl-CoA-independent mechanism. Arch Biochem Biophys 337: 169–175

    Article  PubMed  CAS  Google Scholar 

  31. Jacobs RA, Majerus PW (1973) The regulation of fatty acid synthesis in human skin fibroblasts. Inhibition of fatty acid synthesis by free fatty acids. J Biol Chem 248: 8392–8401

    PubMed  CAS  Google Scholar 

  32. Ottey KA, Wood LC, Grunfeld C, Elias PM, Feingold KR (1995) Cutaneous permeability barrier disruption increases fatty acid synthetic enzyme activity in the epidermis of hairless mice. J Invest Dermatol 104: 401–404

    Article  PubMed  CAS  Google Scholar 

  33. Chapkin RS, Ziboh VA (1984) Inability of skin enzyme preparations to biosynthesize arachidonic acid from linoleic acid. Biochem Biophys Res Commun 124: 784–792

    Article  PubMed  CAS  Google Scholar 

  34. Ziboh VA, Chapkin RS (1988) Metabolism and function of skin lipids. Prog Lipid Res 27: 81–105

    Article  PubMed  CAS  Google Scholar 

  35. Madison KC, Wertz PW, Strauss JS, Downing DT (1986) Lipid composition of culture murine keratinocytes. J Invest Dermatol 87: 253–259

    Article  PubMed  CAS  Google Scholar 

  36. Isserof RR, Ziboh VA, Chapkin RS, Martinez DT (1987) Conversion of linoleic acid into arachidonic acid by cultured murine and human keratinocytes. J Lipid Res 13: 458–467

    Google Scholar 

  37. Marcelo CL, Dunham WR (1993) Fatty acid metabolism studies of human epidermal cell culturers. J Lipid Res 34: 2077–2090

    PubMed  CAS  Google Scholar 

  38. Boyce ST, Ham RG (1985) Cultivation, frozen storage and clonal growth of normal epidermal keratinocytes in serum-free medium. J Tiss Cult Meth 9: 83–93

    Article  Google Scholar 

  39. Willie JJ, Pittelkow MR, Shipley G.D, Scott RE (1984) Integrated control of growth and differentiation of normal human prokeratinocytes cultured in serum-free medium: clonal analyses, growth kinetics and cell cycle studies. J Cell Physiol 121: 31–44

    Article  Google Scholar 

  40. Boyce ST, Ham RG (1983) Calcium-regulated differentiation of normal human epidermal keratinocytes in chemically defined clonal culture and serum-free serial culture. J Invest Dermatol 81 (Suppl): 33s–40s

    Article  PubMed  CAS  Google Scholar 

  41. Williams M, Rutherford SL, Ponec M, Placzek DR, Elias P (1988) Density dependent variation in the lipid content and metabolism of cultured human keratinocytes. J Invest Dermatol 91: 86–91

    Article  PubMed  CAS  Google Scholar 

  42. Cullis, PR, Hope MJ (1985) Physical properties and functional roles of lipids in membranes. In: Vance D, Vance J (eds): Biochemistry of lipids and membranes. Benjamin/Cummings, Menlo Park, CA, 29–30

    Google Scholar 

  43. Marcelo CL, Rhodes LM, Dunham WR (1994) Normalization of essential-fatty-acid-deficient keratinocytes requires palmitic acid. J Invest Dermatol 103: 564–568

    Article  PubMed  CAS  Google Scholar 

  44. Boyce ST, Ham RG (1985) Normal human epidermal keratinocytes. In: Weber MM, Sekely L (eds): In vitro models for cancer research. CRC Press, Boca Raton, FL, 245–274

    Google Scholar 

  45. Dunham WR, Sands RH, Klein SB, Duell EA, Rhodes LM, Marcelo CL (1996). EPR measurements showing that plasma membrane viscosity can vary from 30 to 100 cP in human cell strains. Spectrochemica Acta A 52: 1357–1368

    Article  Google Scholar 

  46. Dunham WR, Klein S, Rhodes LM Marcelo CL (1996) Oleic acid and linoleic acid are the major determinants of plasma membrane viscosity. J Invest Dermatol 107: 332–335

    Article  PubMed  CAS  Google Scholar 

  47. Marcelo CL, Madison K (1984) Regulation of the expression of epidermal keratinocyte proliferation and differentiation by Vitamin A analogs. Arch Dermatol Res 276: 381–389

    Article  PubMed  CAS  Google Scholar 

  48. Glick AB, Flanders KC, Danielpour D, Yuspa SH, Sporn M (1991) Retinoic acid induces transforming growth factor-beta 2 in cultured keratinocytes and mouse epidermis. Cell Regulation 1: 87–97

    Google Scholar 

  49. McGuire J, Fedarko N, Johanssen E, La Vigna J, Lyons G, Milstone L, Osber M (1982) The influence of retinoids on cultivated keratinocytes. J Am Acad Dermatol 6: 630–639

    Article  PubMed  CAS  Google Scholar 

  50. Weiss J, Ellis C, Headington K, Tincoff T, Hamiliton T, Voorhees J (1988) Topical tretinoin improves photoaged skin. A double-blind vehicle-controlled study. J Am Med Assoc 259: 527–532

    Article  CAS  Google Scholar 

  51. Duell E, Anders A, Griffiths C, Chambon P, Voorhees J (1992) Human skin levels of retinoic acid and cytochrome P-450-derived 4-hydroxyretinoic acid after topical application of retinoic acid in vivo compared to concentrations required to stimulate retinoic acid receptor-mediated transcription in vitro. J Clin Invest 90: 1269–1274

    Article  PubMed  CAS  Google Scholar 

  52. Chambon P (1995) The molecular and genetic dissection of the retinoid signaling pathways. Recent Prog Horm Res 50: 317–332

    PubMed  CAS  Google Scholar 

  53. Marcelo CL, Dunham WR (1997) Retinoic acid stimulates essential fatty acid-supplemented human keratinocytes in culture. J Invest Dermatol 108: 758–762

    Article  PubMed  CAS  Google Scholar 

  54. Punnonen K, Puustinen T, Jansen CT (1988) The antipsoriatic drug metabolite etretin (Ro 10-1670) alters the metabolism of fatty acids in human keratinocytes in culture. Arch Dermatol Res 280: 103–107

    Article  PubMed  CAS  Google Scholar 

  55. Ponec M, Boonstra J (1987) Effects of retinoids and hydrocortisone on keratinocyte differentiation, epidermal growth factor binding and lipid metabolism. Dermatologica 175 (Suppl 1): 67–72

    Article  PubMed  CAS  Google Scholar 

  56. Imakado S, Bickenbach JR, Bundman DS, Rothnagel JA, Attar PS, Wang XJ, Walczak VR, Wisniewski S, Pote J, Gordon JS et al (1995) Targeting expression of a dominant-negative retinoic acid receptor mutant in the epidermis of transgenic mice results in loss of barrier function. Genes Dev 9: 317–329

    Article  PubMed  CAS  Google Scholar 

  57. Attar PS, Wertz PW, McArthur M, Imakado S, Bickenbach JR, Roop DR (1997) Inhibition of retinoid signaling in transgenic mice alters lipid processing and disrupts epidermal barrier function. Mol Endocrinol 11: 792–800

    Article  PubMed  CAS  Google Scholar 

  58. Yaar M, Stanley JR, Katz SI (1981) Retinoic acid delays the terminal differentiation of keratinocytes in suspension culture. J Invest Dermatol 76: 363–366

    Article  PubMed  CAS  Google Scholar 

  59. Choi Y, Fuchs E (1990) TGF-beta and retinoic acid: regulators of growth and modifiers of differentiation in human epidermal cells. Cell Regulation 1: 791–809

    PubMed  CAS  Google Scholar 

  60. Jetten AM (1990) Multi-stage program of differentiation in human epidermal keratinocytes: regulation by retinoids. J Invest Dermatol 95: 44s–46s

    Article  Google Scholar 

  61. Tong PS, Horowitz NN, Wheeler LA (1990) Trans retinoic acid enhances the growth response of epidermal keratinocytes to epidermal growth factor and transforming growth factor beta. J Invest Dermatol 94: 126–131

    Article  PubMed  CAS  Google Scholar 

  62. Magnaldo R, Bernerd F, Asselineau D, Darmon M (1992) Expression of loricrin is neg-atively controlled by retinoic acid in human epidermis reconstructed in vitro. Differentiation 49: 39–46

    Article  PubMed  CAS  Google Scholar 

  63. Varani J, Nickoloff BJ, Dixit VM, Mitra RS, Voorhees J (1989) All-trans retinoic acid stimulates growth of adult human keratinocytes cultured in growth factor-deficient medium, inhibits production of thrombospondin and fibronectin, and reduces adhesion. J invest Dermatol 93: 449–454

    Article  PubMed  CAS  Google Scholar 

  64. Sanquer S, Gilchrest BA (1994) Characterization of human cellular retinoic acid-binding proteins-I and-II: ligand binding affinities and distribution in skin. Arch Biochem Biophys 311: 86–94

    Article  PubMed  CAS  Google Scholar 

  65. Marcelo CL, Duell EA, Rhodes LM, Dunham WR (1992) J Invest Dermatol 99: 703–708

    Article  PubMed  CAS  Google Scholar 

  66. Marcelo CL, Rhodes LM, Dunham WR (1992) J Invest Dermatol 103: 564–568

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Basel AG

About this chapter

Cite this chapter

Marcelo, C.L., Dunham, W.R. (1999). The effect of fatty acid composition and retinoic acid on human keratinocyte plasma membrane viscosity. In: Schröder, JM. (eds) Fatty Acids and Inflammatory Skin Diseases. Progress in Inflammation Research. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8761-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8761-8_9

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9762-4

  • Online ISBN: 978-3-0348-8761-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics