Skip to main content

Pharmacological effects and mechanisms of action

  • Chapter

Part of the book series: Milestones in Drug Therapy ((MDT))

Abstract

Valproate (valproic acid; usually used as its sodium salt), also referred to as di-n-propylacetic acid, is a simple eight-carbon branched-chain fatty acid with unique anticonvulsant properties. Valproic acid was first synthesized in 1882 by Burton [1], but there was no known clinical use until its anticonvulsant activity was fortuitously discovered by Pierre Eymard in 1962 in the laboratory of G. Carraz, which was published by Meunier et al. [2]. The first clinical trials of the sodium salt of valproate were reported in 1964 by Carraz et al. [3]. It was marketed in France in 1967, and was released subsequently in more than 100 other countries (in the United States in 1978) for the treatment of epilepsy. Since then, valproate has established itself worldwide as a major antiepileptic drug against several types of epileptic seizures. Clinical experience with valproate has continued to grow in recent years, including use of valproate for diseases other than epilepsy, e.g. in bipolar disorders and migraine. In the following, the preclinical pharmacological profile of valproate and the putative mechanisms involved will be reviewed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Burton BS (1882) On the propyl derivatives and decomposition products of ethylacetoacetate. Am Chem J3: 385–395

    Google Scholar 

  2. Meunier H, Carraz G, Meunier Y, Eymard P, Aimard M (1963) Propriétés pharmacodynamiques de l’acide n-dipropylacétique. 1er Mémoire: Propriétés antiépileptiques. Thérapie 18: 435–438

    PubMed  CAS  Google Scholar 

  3. Carraz G, Fau R, Chateau R, Bonnin J (1964) Communication à propos des premiers essais cliniques sur l’activité anti-épileptique de l’acide n-dipropylacétiques (sel de Na). Ann Med Psychol (Paris) 122: 577–585

    CAS  Google Scholar 

  4. Swinyard EA (1964) The pharmacology of dipropylacetic acid sodium with special emphasis on its effects on the central nervous system. University of Utah College of Pharmacy, Salt Lake City, Utah, 1–25

    Google Scholar 

  5. Shuto K, Nishigaki T (1970) The pharmacological studies on sodium dipropylacetate anti-convulsant activities and general pharmacological actions (in Japanese). Pharmacometrics 4: 937–949

    CAS  Google Scholar 

  6. Krall RL, Penry JK, White BG, Kupferberg HJ, Swinyard EA (1978) Antiepileptic drug development: II. Anticonvulsant drug screening. Epilepsia 19: 409–428

    Article  PubMed  CAS  Google Scholar 

  7. Frey H-H, Löscher W (1976) Di-n-propylacetic acid—profile of anticonvulsant activity in mice. Arzneim-Forsch (Drug Res) 26: 299–301

    CAS  Google Scholar 

  8. Kupferberg HJ (1980) Sodium valproate. In: GH Glaser, JK Penry, DM Woodbury (eds) Antiepileptic drugs: Mechanism of action. Raven Press, New York, 643–654

    Google Scholar 

  9. Löscher W (1980) A comparative study of the pharmacology of inhibitors of GABA-metabolism. Naunyn-Schmiedeberg’s Arch Pharmacol 315: 119–128

    Article  Google Scholar 

  10. Worms P, Lloyd KG (1981) Functional alterations of GABA synapses in relation to seizures. In: PL Morselli, KG Lloyd, W Löscher et al. (eds) Neurotransmitters, seizures, and epilepsy. Raven Press, New York, 37–46

    Google Scholar 

  11. Löscher W, Frey H-H (1977) Effect of convulsant and anticonvulsant agents on level and metabolism of y-aminobutyric acid in mouse brain. Naunyn-Schmiedeberg’s Arch Pharmacol 296: 263–269

    Article  Google Scholar 

  12. Petersen EN (1983) DMCM: a potent convulsive benzodiazepine receptor ligand. Eur J Pharmacol 94: 117–124

    Article  PubMed  CAS  Google Scholar 

  13. Czuczwar SJ, Frey H-H, Löscher W (1985) Antagonism of N-methyl-D,L-aspartic acid-induced convulsions by antiepileptic drugs and other agents. EurfPharmacol 108: 273–280

    CAS  Google Scholar 

  14. Löscher W Jäckel R, Czuczwar SJ (1986) Is amygdala kindling in rats a model for drug-resistant partial epilepsy? Exp Neurol 93: 211–226

    Article  PubMed  Google Scholar 

  15. Frey H-H, Löscher W, Reiche R, Schultz D (1983) Anticonvulsant potency of common antiepileptic drugs in the gerbil. Pharmacology 27: 330–335

    Article  PubMed  CAS  Google Scholar 

  16. Löscher W, Nau H, Marescaux C, Vergnes M (1984) Comparative evaluation of anticonvulsant and toxic potencies of valproic acid and 2-en-valproic acid in different animal models of epilepsy. Eur JPharmacol 99: 211–218

    Article  Google Scholar 

  17. Dailey JW, Jobe PC (1985) Anticonvulsant drugs and the genetically epilepsy-prone rat. Fed Proc 44: 2640–2644

    PubMed  CAS  Google Scholar 

  18. Löscher W, Meldrum BS (1984) Evaluation of anticonvulsant drugs in genetic animal models of epilepsy. Fed Proc 43: 276–284

    PubMed  Google Scholar 

  19. Löscher W, Schwartz-Porsche D, Frey H-H, Schmidt D (1985) Evaluation of epileptic dogs as an animal model of human epilepsy. Arzneim -Forsch (Drug Res) 35: 82–87

    Google Scholar 

  20. Löscher W (1985) Valproic acid. In: H-H Frey, D Janz (eds) Antiepileptic Drugs. Springer Verlag, Berlin, 507–536

    Chapter  Google Scholar 

  21. Löscher W, Schmidt D (1988) Which animal models should be used in the search for new antiepileptic drugs? A proposal based on experimental and clinical considerations. Epilepsy Res 2: 145–181

    Article  PubMed  Google Scholar 

  22. Löscher W (1998) New visions in the pharmacology of anticonvulsion. Eur JPharmacol 342: 1–13

    Article  Google Scholar 

  23. Hönack D, Löscher W (1992) Intravenous valproate: onset and duration of anticonvulsant activity against a series of electroconvulsions in comparison with diazepam and phenytoin. Epilepsy Res 13:215–221

    Article  PubMed  Google Scholar 

  24. Lockard JS, Levy RH, Koch KM et al. (1983) A monkey model for status epilepticus: Carbamazepine and valproate compared to three standard anticonvulsants. In: AV Delgado-Escueta, CG Wasterlain, DM Treiman et al. (eds) Status epilepticus. Raven Press, New York, 411–419; b Walton NY, Treiman DM (1992) Valproic acid treatment of experimental status epilepticus. Epilepsy Res 12: 199–205

    Google Scholar 

  25. Löscher W, Fisher JE, Nau H, Hönack D (1988) Marked increase in anticonvulsant activity but decrease in wet-dog shake behaviour during short-term treatment of amygdala-kindled rats with valproic acid. Eur JPharmacol 150: 221–232

    Article  Google Scholar 

  26. Löscher W, Fisher JE, Nau H, Hönack D (1989) Valproic acid in amygdala-kindled rats: alterations in anticonvulsant efficacy, adverse effects and drug and metabolite levels in various brain regions during chronic treatment. JPharmacol Exp Ther 250: 1067–1078

    Google Scholar 

  27. Löscher W, Hönack D (1995) Comparison of anticonvulsant efficacy of valproate during prolonged treatment with one and three daily doses or continuous (“controlled release”) administration in a model of generalized seizures in rats. Epilepsia 36: 929–937

    Article  PubMed  Google Scholar 

  28. Altrup U, Gerlach G, Reith H, Said MN, Speckmann E-J (1992) Effects of valproate in a model nervous system (buccal ganglia of Helix pomatia: I. Antiepileptic actions. Epilepsia 743–752

    Google Scholar 

  29. Hernandez TD (1997) Preventing post-traumatic epilepsy after brain injury: weighing the costs and benefits of anticonvulsant prophylaxis. Trends Pharmacol Sci 18: 59–62;

    CAS  Google Scholar 

  30. Shinnar S, Berg AT (1996) Does antiepileptic drug therapy prevent the development of “chronic” epilepsy? Epilepsia 37: 701–708; c Silver JM, Shin C, McNamara JO (1991) Antiepileptogenic effects of conventional anticonvulsants in the kindling model of epilepsy. Ann Neurol 29: 356–363

    Article  PubMed  CAS  Google Scholar 

  31. Silver JM, Shin C, McNamara JO (1991) Antiepileptogenic effects of conventional anticonvulsants in the kindling model of epilepsy. Ann Neurol 29: 356–363

    CAS  Google Scholar 

  32. Vajda FJ, Donnan GA, Phillips J, Bladin PF (1981) Human brain, plasma and cerebrospinal fluid concentration of sodium valproate after 72 hours of therapy. Neurology 31: 486–487

    Article  PubMed  CAS  Google Scholar 

  33. Löscher W, Rundfeldt C, Hönack D (1993) Pharmacological characterization of phenytoin-resistant amygdala-kindled rats, a new model of drug-resistant partial epilepsy. Epilepsy Res 15: 207–219

    Article  PubMed  Google Scholar 

  34. Löscher W (1997) Animal models of intractable epilepsy. Prog Neurobiol 53: 239–258

    Article  PubMed  Google Scholar 

  35. Löscher W, Rundfeldt C (1991) Kindling as a model of drug-resistant partial epilepsy: selection of phenytoin-resistant and nonresistant rats. JPharmacol Exp Ther 258: 483–489

    Google Scholar 

  36. Jurna I (1985) Electrophysiological effects of antiepileptic drugs. In: H-H Frey, D Janz (eds) Antiepileptic drugs. Springer, Berlin, 611–658

    Chapter  Google Scholar 

  37. Schwartzkroin PA (1986) Hippocampal slices in experimental and human epilepsy. Adv Neurol 44: 991–1010

    PubMed  CAS  Google Scholar 

  38. Heinemann U, Draguhn A, Ficker E, Stabel J, Zhang CL (1994) Strategies for the development of drugs for pharmacoresistant epilepsies. Epilepsia 35 (Suppl. 5): S10—S21

    Article  PubMed  Google Scholar 

  39. Chapman A, Keane PE, Meldrum BS, Simiand J, Vernieres JC (1982) Mechanism of anti-convulsant action of valproate. Progr Neurobiol 19: 315–359

    Article  CAS  Google Scholar 

  40. Cotariu D, Zaidman JL, Evans S (1990) Neurophysiological and biochemical changes evoked by valproic acid in the central nervous system. Progr Neurobiol 34: 343–354

    Article  CAS  Google Scholar 

  41. Rogawski MA, Porter RJ (1990) Antiepileptic drugs: pharmacological mechanisms and clinical efficacy with consideration of promising developmental stage compounds. Pharmacol Rev 42: 223–286

    PubMed  CAS  Google Scholar 

  42. Evans MS (1992) Overview of actions of antiepileptic drugs on repetitive neuronal firing. In: CL Faingold, GH Fromm (eds): Drugs for control of epilepsy: Actions on neuronal networks involved in seizure disorders. CRC Press, Boca Raton, 69–88

    Google Scholar 

  43. Clark S, Wilson WA (1992) Brain slice model of epilepsy: Neuronal networks and actions of antiepileptic drugs. In: CL Faingold, GH Fromm (eds): Drugs for control of epilepsy: Actions on neuronal networks involved in seizure disorders. CRC Press, Boca Raton, 89–124

    Google Scholar 

  44. Fromm GH (1992) Antiepileptic actions of valproate. In: CL Faingold, GH Fromm (eds): Drugs for control of epilepsy: Actions on neuronal networks involved in seizure disorders. CRC Press, Boca Raton, 453–462

    Google Scholar 

  45. Fariello RG, Varasi M, Smith MC (1995) Valproic acid. Mechanisms of action. In: RH Levy, RH Mattson, BS Meldrum (eds): Antiepileptic drugs. Fourth edition. Raven Press, New York, 581–604

    Google Scholar 

  46. Thomson SM (1993) Consequence of epileptic activity in vitro. Brain Pathol 3: 413–419

    Article  Google Scholar 

  47. Schmitz D, Zhang CL, Chatterjee SS, Heinemann U (1995) Effects of methysticin on three different models of seizure like events studied in rat hippocampal and entorhinal cortex slices. Naunyn-Schmiedeberg’s Arch Pharmacol 351: 348–355

    CAS  Google Scholar 

  48. Zhang CL, Dreier JP, Heinemann U (1995) Paroxysmal epileptiform discharges in temporal lobe slices after prolonged exposure to low magnesium are resistant to clinically used anticonvulsants. Epilepsy Res 20: 105–111

    Article  PubMed  CAS  Google Scholar 

  49. Dreier JP, Heinemann U (1990) Late low magnesium-induced epileptiform activity in rat entorhinal cortex slides becomes insensitive to the anticonvulsant valproic acid. Neurosci Lett 119: 68–70

    Article  PubMed  CAS  Google Scholar 

  50. Sokolova S, Schmitz D, Zjang CL, Löscher W, Heinemann U (1998) Comparison of effects of valproate and trans-2-en-valproate on different forms of epileptiform activity in rat hippocampal and temporal cortex slices. Epilepsia 39: 251–258

    Article  PubMed  CAS  Google Scholar 

  51. Lal H, Shearman GT (1980) Effect of valproic acid on anxiety-related behaviours in the rat. Brain Res Bull 5 (Suppl. 2): 575–577

    Article  CAS  Google Scholar 

  52. Simler S, Puglisi-Allegra S, Mandel P (1983) Effects of n-di-propylacetate on aggressive behavior and brain GABA level in isolated mice. Pharmacol Biochem Behav 18: 717–720

    Article  PubMed  CAS  Google Scholar 

  53. Simler S, Ciesielski L, Klein M, Mandel P (1982) Anticonvulsant and antiaggressive properties of di-n-propylacetate after repeated treatment. Neuropharmacology 21: 133–140

    Article  PubMed  CAS  Google Scholar 

  54. Vellucci SV Webster RA (1984) The role of GABA in the anticonflict action of sodium valproate and chlordiazepoxide. Pharmacol Biochem Behav 21: 845–851

    Article  PubMed  CAS  Google Scholar 

  55. Fredow G, Löscher W (1991) Effects of pharmacological manipulation of GABAergic neurotransmission in a new mutant hamster model of paroxysmal dystonia. Eur J Pharmacol 192: 207–219

    Article  PubMed  CAS  Google Scholar 

  56. De Boer T, Metselaar HJ, Briunvels J (1977) Suppression of GABA-induced abstinence behaviour in naive rats by morphine and bicuculline. Life Sci 20: 933–942

    Article  PubMed  Google Scholar 

  57. Cowan A, Watson T (1978) Lysergic acid diethylamide antagonizes shaking induced in rats by five chemically different compounds. Psychopharmacology 57: 43–46

    Article  PubMed  CAS  Google Scholar 

  58. Kuruvilla A, Uretsky NJ (1981) Effect of sodium valproate on motor function regulated by the activation of GABA receptors. Psychopharmacology 72: 167–172

    Article  PubMed  CAS  Google Scholar 

  59. Löscher W, Vetter M (1985) In vivo effects of aminooxyacetic acid and valproic acid on nerve terminal (synaptosomal) GABA levels in discrete brain areas of the rat. Correlation to pharmacological activities. Biochem Pharmacol 34: 1747–1756

    Article  PubMed  Google Scholar 

  60. Carraz G, Fiorina S (1967) Activation de la formation d’anti corps par le système réticuloendothelial. Ann Biol Clin (Paris) 76: 187

    Google Scholar 

  61. De Souza Queiroz ML, Mullen PW (1980) The effects of phenytoin, 5-(parahydroxyphenyl)-5-phenylhydantoin, and valproic acid on humoral immunity in mice. Int J Immunopharmacol 2: 224–225

    Article  Google Scholar 

  62. Rotiroli D, Palella B, Losi E, Nistico G, Caputi AP (1982) Evidence that a GABAergic mechanism influences the development of DOCA-salthypertension in the rat. Eur JPharmacol 83: 153–154

    Article  Google Scholar 

  63. Balfour JA, Bryson HM (1994) Valproic acid — A review of its pharmacology and therapeutic potential in indications other than epilepsy. Cns Drugs 2: 144–173

    Article  Google Scholar 

  64. Emrich HM, von Zerssen D, Kissling W, Moeller HJ, Windorfer A (1980) Effect of sodium valproate on mania. The GABA-hypothesis of affective disorders. Arch Psychiatr Nervenkr 229: 1–16

    Article  PubMed  CAS  Google Scholar 

  65. Jancovic J, Fahn S (1988) Dystonic syndromes. In: J Jancovic, E Tolosa (eds): Parkinson’s disease and movement disorders. Urban and Schwarzenbek, Baltimore, 283–314

    Google Scholar 

  66. Macdonald RL (1989) Antiepileptic drug action. Epilepsia 30 (Suppl. 1): S19—S28

    Article  PubMed  Google Scholar 

  67. Macdonald RL, Kelly KM (1995) Antiepileptic drug mechanisms of action. Epilepsia 36: S2—S12

    Article  PubMed  Google Scholar 

  68. Macdonald RL, Meldrum BS (1995) Principles of antiepileptic drug action. In: RH Levy, RH Mattson, BS Meldrum (eds): Antiepileptic drugs, Fourth edition. Raven Press, New York, 61–78

    Google Scholar 

  69. Löscher W, Schmidt D (1994) Strategies in antiepileptic drug development: is rational drug design superior to random screening and structural variation? Epilepsy Res 17: 95–134

    Article  PubMed  Google Scholar 

  70. Schachter SC (1995) Review of the mechanisms of action of antiepileptic drugs. Cns Drugs 4: 469–477

    Article  CAS  Google Scholar 

  71. White HS (1997) Clinical significance of animal seizure models and mechanism of action studies of potential antiepileptic drugs. Epilepsia 38: S9—S17

    Article  PubMed  Google Scholar 

  72. Schmidt D, Gram L (1995) Monotherapy versus polytherapy in epilepsy: A reappraisal. Cns Drugs 3: 194–208

    Article  Google Scholar 

  73. Pinder RM, Brogden RN, Speight TM, Avery GS (1977) Sodium valproate: A review of its pharmacological properties and therapeutic efficacy in epilepsy. Drugs 13: 81–123

    Article  PubMed  CAS  Google Scholar 

  74. Meldrum B (1980) Mechanism of action of valproate. Brain Res Bull 5 (Suppl. 2): 579–584

    Article  CAS  Google Scholar 

  75. Turner AJ, Whittle SR (1980) Sodium valproate, GABA and epilepsy. Trends Pharmacol Sci 1: 257–260

    Article  CAS  Google Scholar 

  76. Hammond EJ, Wilder BJ, Bruni J (1981) Central actions of valproic acid in man and in experimental models of epilepsy. Life Sci 29: 2561–2574

    Article  PubMed  CAS  Google Scholar 

  77. Kerwin RW, Taberner PV (1981) The mechanism of action of sodium valproate. Gen Pharmacol 12: 71–75

    Article  PubMed  CAS  Google Scholar 

  78. Johnston D (1984) Valproic acid: update of its mechanism of action. Epilepsia 24 (Suppl. 1): S1—S4

    Google Scholar 

  79. Morre M, Keane PE, Vernires JC, Simiand J, Ronucci R (1984) Valproate: Recent findings and perspectives. Epilepsia 25 (Suppl. 1): S5—S9

    PubMed  Google Scholar 

  80. Macdonald RL, Mclean MJ (1986) Anticonvulsant drugs: mechanisms of action. In: AV Delgado-Escueta, AAJ Ward, DM Woodbury et al. (eds): Basic mechanisms of the epilepsies. Molecular and cellular approaches. Raven Press, New York, 713–736

    Google Scholar 

  81. Löscher W (1993) Effects of the antiepileptic drug valproate on metabolism and function of inhibitory and excitatory amino acids in the brain. Neurochem Res 18: 485–502

    Article  PubMed  Google Scholar 

  82. Davis R, Peters DH, Mctavish D (1994) Valproic acid — a reappraisal of its pharmacological properties and clinical efficacy in epilepsy. Drugs 47: 332–372

    Article  PubMed  CAS  Google Scholar 

  83. Löscher W (1991) Anticonvulsant Drug Mechanisms. In: MR Klee, HD Lux, E-J Speckmann (eds): Physiology, pharmacology and development of epileptogenic phenomena. Springer-Verlag, Berlin, 193–200

    Google Scholar 

  84. Löscher W (1989) GABA and the epilepsies. Experimental and clinical considerations. In: NG Bowery, G Nisticò (eds): GABA. Basic research and clinical applications. Pythagora Press, Rome, 260–300

    Google Scholar 

  85. Simler S, Randrianarisoa H, Lehman A, Mandel P (1968) Effects du di-n-propylacétate sur les crises audiogènes de la souris. JPhysiol (Paris) 60: 547

    Google Scholar 

  86. Godin Y, Heiner L, Mark J, Mandel P (1969) Effects of di-n-propylacetate, an anticonvulsive compound, on GABA metabolism. JNeurochem 16: 869–873

    Article  CAS  Google Scholar 

  87. Iadarola MJ, Raines A, Gale K (1979) Differential effects of n-dipropylacetate and aminooxyacetic acid on y-aminobutyric acid levels in discrete areas of rat brain. JNeurochem 33: 1119–1123

    Article  CAS  Google Scholar 

  88. Iadarola MJ, Gale K (1981) Cellular compartments of GABA in brain and their relationship to anticonvulsant activity. Mol Cell Biochem 39: 305–330

    Article  PubMed  CAS  Google Scholar 

  89. Löscher W (1982) GABA in plasma, CSF and brain of dogs during acute and chronic treatment with y-acetylenic GABA and valproic acid. In: Y Okada, E Roberts (eds): Problems in GABA research —from Brain to Bacteria. Exerpta Medica, Amsterdam, 102–109

    Google Scholar 

  90. Löscher W (1981) Valproate induced changes in GABA metabolism at the subcellular level. Biochem Pharmacol 30: 1364–1366

    Article  PubMed  Google Scholar 

  91. Biggs CS, Pearce BR, Fowler LJ, Whitton PS (1992b) The effect of sodium valproate on extracellular GABA and other amino acids in the rat ventral hippocampus: an in vivo microdialysis study. Brain Res 594: 138–142

    Article  CAS  Google Scholar 

  92. Rowley HL, Marsden CA, Martin KF (1995) Differential effects of phenytoin and sodium valproate on seizure-induced changes in gamma-aminobutyric acid and glutamate release in vivo. Eur JPharmacol 294: 541–546

    Article  CAS  Google Scholar 

  93. Zimmer R, Teelken AW, Gündürewa M, Rüther E, Cramer H (1980) Effect of sodium valproate on CSF GABA, cAMP, cGMP and homovanillic acid levels in men. Brain Res Bull 5 (Suppl. 2): 585–588

    Article  CAS  Google Scholar 

  94. Löscher W, Siemes H (1984) Valproic acid increases y-aminobutyric acid in CSF of epileptic children. Lancet II: 225

    Article  Google Scholar 

  95. Löscher W, Siemes H (1985) Cerebrospinal fluid y-aminobutyric acid levels in children with different types of epilepsy: effect of anticonvulsant treatment. Epilepsia 26: 314–319

    Article  PubMed  Google Scholar 

  96. Löscher W, Schmidt D (1980) Increase of human plasma GABA by sodium valproate. Epilepsia 21: 611–615

    Article  PubMed  Google Scholar 

  97. Löscher W, Schmidt D (1981) Plasma GABA levels in neurological patients under treatment with valproic acid. Life Sci 28: 2383–2388

    Article  Google Scholar 

  98. Iadarola MJ, Gale K (1979) Dissociation between drug-induced increases in nerve ter-minal and non-nerve terminal pools of GABA in vivo. Eur J Pharmacol 59: 125–129

    Article  PubMed  CAS  Google Scholar 

  99. Maitre M, Ciesielski L, Cash C, Mandel P (1978) Comparison of the structural characteristics of the 4-aminobutyrate: 2-oxoglutarate transaminases from rat and human brain, and of their affinities for certain inhibitors. Biochim Biophys Acta 522: 385–399

    Article  PubMed  CAS  Google Scholar 

  100. Whittle SR, Turner AJ (1978) Effects of the anticonvulsant sodium valproate on y-aminobutyrate and aldehyde metabolism in ox brain. JNeurochem 31: 1453–1459

    Article  CAS  Google Scholar 

  101. Löscher W (1980) Effect of inhibitors of GABA transaminase on the synthesis, binding, uptake, and metabolism of GABA. J Neurochem 34: 1603–1608

    Article  PubMed  Google Scholar 

  102. Larsson OM, Gram L, Schousboe I, Schousboe A (1986) Differential effects of gamma-vinyl GABA and valproate on GABA-transaminase from cultured neurons and astrocytes. Neuropharmacology 25: 617–625

    Article  PubMed  CAS  Google Scholar 

  103. Kumlien E, Sherif F, Ge L, Oreland L (1995) Platelet and brain GABA-transaminase and monoamine oxidase activities in patients with complex partial seizures. Epilepsy Res 20: 161–170

    Article  PubMed  CAS  Google Scholar 

  104. Phillips NI, Fowler LJ (1982) The effects of sodium valproate on y-aminobutyrate metabolism and behavior in naive and ethanolamine-O-sulphate pretreated rats and mice. Biochem Pharmacol 31: 2257–2261

    Article  PubMed  CAS  Google Scholar 

  105. Löscher W (1993) In vivo administration of valproate reduces the nerve terminal (synaptosomal) activity of GABA aminotransferase in discrete brain areas of rats. Neurosci Lett 160: 177–180

    Article  PubMed  Google Scholar 

  106. Van der Laan JW, De Boer T, Bruinvels J (1979) Di-n-propylacetate and GABA degradation. Preferential inhibition of succinic semialdehyde dehydrogenase and indirect inhibition of GABA-transaminase. JNeurochem 32: 1769–1780

    Article  Google Scholar 

  107. Maitre M, Ossola L, Mandel P (1976) In vitro studies into the effect of inhibition of rat brain succinic semialdehyde dehydrogenase on GABA synthesis and degradation. FEBS Lett 72: 53–57

    Article  CAS  Google Scholar 

  108. Simler S, Ciesielski L, Klein M, Gobaille S, Mandel P (1981) Sur le mécanisme d’action d’un anticonvulsivant, le dipropylacétate de sodium. CR Soc Biol (Paris) 175: 114–119

    CAS  Google Scholar 

  109. Vayer P, Cash CD, Maitre M (1988) Is the anticonvulsant mechanism of valproate linked to its interaction with the cerebral y-hydroxybutyrate system? Trends Pharmacol Sci 9: 127–129

    Article  PubMed  CAS  Google Scholar 

  110. Whittle SR, Turner SJ (1982) Effects of anticonvulsants on the formation of y-hydroxybutyrate from y-aminobutyrate in rat brain. JNeurochem 38: 848–851

    Article  CAS  Google Scholar 

  111. Snead OC III (1988) y-Hydroxybutyrate model of generalized absence seizures: further characterization and comparison with other absence models. Epilepsia 29: 361–377

    Article  PubMed  CAS  Google Scholar 

  112. Snead OC III, Bearden LJ, Pegram V (1980) Effect of acute and chronic anticonvulsant administration on endogenous y-hydroxybutyrate in rat brain. Neuropharmacology 19: 47–52

    Article  PubMed  CAS  Google Scholar 

  113. Löscher W, Frey H-H (1977) Zum Wirkungsmechanismus von Valproinsäure. Arzneimittel-Forsch 27: 1081–1082

    Google Scholar 

  114. Taylor CP, Vartanian MG, Andruszkiewicz R, Silverman RB (1992) 3-Alkyl GABA and 3-alkylglutamic acid analogues: two new classes of anticonvulsant agents. Epilepsy Res 11: 103–110

    Article  PubMed  CAS  Google Scholar 

  115. Wikinski SI, Acosta GB, Rubio MC (1996) Valproic acid differs in its in vitro effect on glutamic acid decarboxylase activity in neonatal and adult rat brain. Gen Pharmacol 27: 635–638

    Article  PubMed  CAS  Google Scholar 

  116. Taberner PV, Charington CB, Unwin JW (1980) Effects of GAD and GABA-T inhibitors on GABA metabolism in vivo. Brain Res Bull 5 (Suppl. 2): 621–625

    Article  CAS  Google Scholar 

  117. Löscher W (1989) Valproate enhances GABA turnover in the substantia nigra. Brain Res 501: 198–203

    Article  PubMed  Google Scholar 

  118. Luder AS, Parks JK, Frerman F, Parker WDJ (1990) Inactivation of beef brain -ketoglutarate dehydrogenase complex by valproic acid and valproic acid metabolites. J Clin Invest 86: 1574–1581

    Article  PubMed  CAS  Google Scholar 

  119. Nau H, Löscher W (1982) Valproic acid: Brain and plasma levels of the drug and its metabolites, anticonvulsant effects and GABA metabolism in the mouse. JPharmacol Exp Ther 220: 654–659

    CAS  Google Scholar 

  120. Bolanos JP, Medina JM (1993) Evidence of stimulation of the gamma-aminobutyric acid shunt by valproate and E-delta-2-valproate in neonatal rat brain. Mol Pharmacol 43: 487–490

    PubMed  CAS  Google Scholar 

  121. Ekwuru MO, Cunningham JR (1990) Phaclofen increases GABA release from valproate treated rats. Brit JPharmacol 99 (Suppl.): 251P

    Google Scholar 

  122. Gram L, Larsson OM, Johnsen AH, Schousboe A (1988) Effects of valproate, vigabatrin and aminooxyacetic acid on release of endogenous and exogenous GABA from cultured neurons. Epilepsy Res 2: 87–95

    Article  CAS  Google Scholar 

  123. Ross SM, Craig CR (1981) Studies on y-aminobutyric acid transport in cobalt experimental epilepsy in the rat. JNeurochem 36: 1006–1011

    Article  CAS  Google Scholar 

  124. Wolf R, Tscherne U, Emrich HM (1988) Suppression of preoptic GABA release caused by push-pull-perfusion with sodium valproate. Naunyn-Schmiedeberg’s Arch Pharmacol 338: 658–663

    Article  CAS  Google Scholar 

  125. Farrant M, Webster RA (1989) Neuronal activity, amino acid concentration and amino acid release in the substantia nigra of the rat after sodium valproate. Brain Res 504: 49–56

    Article  PubMed  CAS  Google Scholar 

  126. Timmerman W, Westerink BHC (1997) Brain microdialysis of GABA and glutamate: What does it signify? Synapse 27: 242–261

    Article  PubMed  CAS  Google Scholar 

  127. Olsen RW (1981) The GABA postsynaptic membrane receptor-ionophore complex. Site of action of convulsant and anticonvulsant drugs. Mol Cell Biochem 39: 261–279

    Article  PubMed  CAS  Google Scholar 

  128. Motohashi N (1992) GABA receptor alterations after chronic lithium administration -Comparison with carbamazepine and sodium valproate. Prog Neuro-Psych Biol Psych 16: 571–579

    Article  CAS  Google Scholar 

  129. Miller LG, Greenblatt DJ, Barnhill JG, Summer WR, Shader RI (1988) “GABA shift” in vivo: enhancement of benzodiazepine binding in vivo by modulation of endogenous GABA. Eur JPharmacol 148: 123–130

    Article  CAS  Google Scholar 

  130. Mimaki T, Yabucchi W, Laird H, Yamamura HI (1984) Effects of seizures and antiepileptic drugs on benzodiazepine receptors in rat brain. Pediatr Pharmacol 4: 205–211

    CAS  Google Scholar 

  131. Squires RF, Casida JE, Richardson M, Saederup E (1983) [35S]-Butylbicyclophosphorothionate binds with high affinity to brain-specific sites coupled to y-aminobutyric acid-A and ion recognition sites. Mol Pharmacol 23: 326–336

    PubMed  CAS  Google Scholar 

  132. Pitkänen A, Saano V, Tuomisto L, Riekkinen PJ (1987) Effect of anticonvulsant drugs on [35S]t-butylbicyclophosphorothionate binding in vitro and ex vivo. Pharmacol Toxicol 61: 103–106

    Article  PubMed  Google Scholar 

  133. Concas A, Mascia MP, Sanna E, Santoro G, Serra M, Biggio G (1991) “In vivo” administration of valproate decreases t[35S]butylbicyclophosphorothionate binding in the rat brain. Naunyn-Schmiedeberg’s Arch Pharmacol 343: 296–300

    CAS  Google Scholar 

  134. Lloyd KG, Thuret F Pile A (1985) Upregulation of gamma-aminobutyric (GABA) B binding sites in rat frontal cortex: a common action of repeated administration of different classes of antidepressants and electroshock. J Pharmacol Exp Ther 235: 191–199

    PubMed  CAS  Google Scholar 

  135. Nutt DJ, Cowen PJ, Little HJ (1982) Unusual interactions of benzodiazepine receptor antagonists. Nature 295: 436

    Article  PubMed  CAS  Google Scholar 

  136. Gent JP, Bentley M, Feely M, Haigh JRM (1986) Benzodiazepine cross-tolerance in mice extends to sodium valproate. Eur J Pharmacol 128: 9–15

    Article  PubMed  CAS  Google Scholar 

  137. Liljequist S, Engel JA (1984) Reversal of anticonflict action of valproate by various GABA and benzodiazepine antagonists. Life Sci 34: 2525–253

    Article  PubMed  CAS  Google Scholar 

  138. DeFeudis FV (1984) Gamma-aminobutyric acid-ergic analgesia: implications for gammaaminobutyric acid-ergic therapy for drug addiction. Drug Alcohol Depend 14: 101–111

    Article  PubMed  CAS  Google Scholar 

  139. Löscher W, Hörstermann D (1994) Differential effects of vigabatrin, gamma-acetylenic GABA, aminooxyacetic acid, and valproate on levels of various amino acids in rat brain regions and plasma. Naunyn-SchmiedebergsArch Pharmacol 349: 270–278

    Google Scholar 

  140. Dixon JF, Hokin LE (1997) The antibipolar drug valproate mimics lithium in stimulating glutamate release and inositol 1,4,5- trisphosphate accumulation in brain cortex slices but not accumulation of inositol monophosphates and bisphosphates. Proc NatlAcad Sci USA 94: 4757–4760

    Article  PubMed  CAS  Google Scholar 

  141. Crowder JM, Bradford HF (1987) Common anticonvulsants inhibit Ca’ uptake and amino acid neurotransmitter release in vitro. Epilepsia 28: 378–382

    Article  PubMed  CAS  Google Scholar 

  142. Martin-Gallard A, Rodriguez P, Lopet M, Benavides J, Ugarte M (1985) Effects of dipropylacetate on the glycine cleavage enzyme system and glycine levels. Biochem Pharmacol 34: 2877–2882

    Article  Google Scholar 

  143. Similae S, von Wendt L, Linna SL, Saukkonen AL, Huhtaniemi I (1979) Dipropylacetate and hyperglycemia. Neuropaediatrie 1: 158–160

    Article  Google Scholar 

  144. Patsalos PN, Lascelles PT (1981) Changes in regional brain levels of amino acid putative neurotransmitters after prolonged treatment with the anticonvulsant drugs diphenylhydantoin, phenobarbitone, sodium valproate, ethosuximide, and sulthiame in the rat. J Neurochem 36: 688–695

    Article  PubMed  CAS  Google Scholar 

  145. Nilsson M, Hansson E, Ronnback L (1992) Interactions between valproate, glutamate, aspartate, and GABA with respect to uptake in astroglial primary cultures. Neurochem Res 17: 327–332

    Article  PubMed  CAS  Google Scholar 

  146. Macdonald RL, Bergey GK (1979) Valproic acid augments GABA-mediated postsynaptic inhibition in cultured mammalian neurons. Brain Res 170: 558–562

    Article  PubMed  CAS  Google Scholar 

  147. McLean MJ, Macdonald RL (1986) Sodium valproate, but not ethosuximide, produces use-and voltage-dependent limitation of high frequency repetitive firing of action potentials of mouse central neurons in cell culture. JPharmacol Exp Ther 237: 1001–1011

    CAS  Google Scholar 

  148. Harrison NL, Simmonds MA (1982) Sodium valproate enhances responses to GABA receptor activation only at high concentrations. Brain Res 250: 201–204

    Article  PubMed  CAS  Google Scholar 

  149. Olpe HR, Steinmann MW, Pozza MF, Brugger F, Schmutz M (1988) Valproate enhances GABA-A mediated inhibition of locus coeruleus neurons in vitro. Naunyn-Schmiedeberg’s Arch Pharmacol 338: 655–657

    Article  CAS  Google Scholar 

  150. Perreault P, Tancredi V, Avoli M (1989) Failure of the antiepileptic drug valproic acid to modify synaptic and non-synaptic responses of Cal hippocampal pyramidal cells “in vitro”. Epilepsy Res 3: 227–231

    Article  PubMed  CAS  Google Scholar 

  151. Muâhoff U, Madeja M, Düsing R, Speckmann E-J (1996) Valproate affects glutamate but not GABA receptors. Eur JNeurosci 9 (Suppl.): 205

    Google Scholar 

  152. Gent JP, Phillips NI (1980) Sodium di-n-propylacetate (valproate) potentiates responses to GABA and muscimol on single central neurons. Brain Res 197: 275–278

    Article  PubMed  CAS  Google Scholar 

  153. Zeise ML, Kasparaow S, Zieglgansberger W (1991) Valproate suppresses N-methyl-Daspartate evoked, transient depolarizations in the rat neocortex in vitro. Brain Res 544: 345–348

    Article  PubMed  CAS  Google Scholar 

  154. Wamil AW, Mclean MJ (1991) Effect of anticonvulsant medications on responses to NMDA by mouse central neurons in cell culture. Epilepsia 32 (Suppl. 3): 42

    Google Scholar 

  155. Gean PW, Huang CC, Hung CR, Tsai JJ (1994) Valproic acid suppresses the synaptic response mediated by the NMDA receptors in rat amygdalar slices. Brain Res Bull 33: 333–336

    Article  PubMed  CAS  Google Scholar 

  156. Baldino F, Geller HM (1981) Effect of sodium valproate on hypothalamic neurons in vivo and in vitro. Brain Res 219: 231–237

    Article  PubMed  CAS  Google Scholar 

  157. VanDongen AMJ, VanErp MG, Voskuyl RA (1986) Valproate reduces excitability by blockade of sodium and potassium conductance. Epilepsia 27: 177–182

    Article  PubMed  CAS  Google Scholar 

  158. Van den Berg RJ, Kok P, Voskuyl RA (1993) Valproate and sodium currents in cultured hippocampal neurons. Exp Brain Res 93: 279–287

    PubMed  Google Scholar 

  159. Franceschetti S, Hannon B, Heinemann U (1986) The action of valproate on spontaneous epileptiform activity in the absence of synaptic transmission and on evoked changes in [Caz+]o and [K+]0 in the hippocampal slice. Brain Res 386: 1–11

    Article  PubMed  CAS  Google Scholar 

  160. Coulter DA, Huguenard JR, Prince DA (1989) Characterization of ethosuximide reduction of low-threshold calcium current in thalamic neurons. Ann Neurol 25: 582–593

    Article  PubMed  CAS  Google Scholar 

  161. Kelly KM, Gross RA, Macdonald RL (1990) Valproic acid selectively reduces the low-threshold (T) calcium current in rat nodose neurons. Neurosci Lett 116: 1–2

    Article  Google Scholar 

  162. Slater GE, Johnston D (1978) Sodium valproate increases potassium conductance in Aplysia neurons. Epilepsia 19: 379–384

    Article  PubMed  CAS  Google Scholar 

  163. Walden J, Altrup U, Reith H, Speckmann E-J (1993) Effects of valproate on early and late potassium currents of single neurons. Eur Neuropsychopharmacol 3: 137–141

    Article  PubMed  CAS  Google Scholar 

  164. Perlman BJ, Goldstein DB (1984) Membrane-disordering potency and anticonvulsant action of valproic acid and other short-chain fatty acids. Mol Pharmacol 26: 83–89

    PubMed  CAS  Google Scholar 

  165. Kerwin RW, Olpe HR, Schmutz M (1980) The effect of sodium-n-dipropylacetate on y-aminobutyric acid-dependent inhibition in the rat cortex and substantia nigra in relation to its anticonvulsant activity. Br J Pharmacol 71: 545–551

    Article  PubMed  CAS  Google Scholar 

  166. Rohlfs A, Rundfeldt C, Koch R, Löscher W (1996) A comparison of the effects of valproate and its major active metabolite E-2-en-valproate on single unit activity of substantia nigra pars reticulata neurons in rats. JPharmacol Exp Ther 277: 1305–1314

    CAS  Google Scholar 

  167. Albus H, Williamson RW (1998) Electrophysiological analysis of the actions of valproate on pyramidal neurons in the rat hippocampal slice. Epilepsia 39: 124–139

    Article  PubMed  CAS  Google Scholar 

  168. Roderfeld H-J, Altrup U, Düsing R, Lorra C, Madeja M, Mußhoff U, Pongs O, Speckmann E-J, Spener F (1994) Effects of the antiepileptic drug valproate on cloned voltage-dependent potassium channels. Pflügers Arch 426 (Suppl.): R32

    Google Scholar 

  169. Rumbach L, Mutet C, Creme] G, Marescaux CA, Micheletti G, Warter JM, Waksman A (1986) Effects of sodium valproate on mitochondrial membranes: electron paramagnetic resonance and transmembrane protein movement studies. Mol Pharmacol 30: 270–273

    PubMed  CAS  Google Scholar 

  170. Horton RW, Anlezark GM, Sawaya MCB, Meldrum BS (1977) Monoamine and GABA metabolism and the anticonvulsant action of di-n-propylacetate and ethanolamine-O-sulphate. Eur JPharmacol 41: 387–397

    Article  CAS  Google Scholar 

  171. Hwang EC, van Woert MH (1979) Effect of valproic acid on serotonin metabolism. Neuropharmacology 18: 391–397

    Article  PubMed  CAS  Google Scholar 

  172. Vriend JP, Alexiuk NAM (1996) Effects of valproate on amino acid and monoamine concentrations in striatum of audiogenic seizure-prone balb/c mice. Mol Chem Neuropathol 27: 307–324

    Article  PubMed  CAS  Google Scholar 

  173. Baf MHM, Subhash MN, Lakshmana KM, Rao BSSR (1994) Sodium valproate induced alterations in monoamine levels in different regions of the rat brain. Neurochem Int 24: 67–72

    Article  PubMed  CAS  Google Scholar 

  174. Biggs CS, Pearce BR, Fowler LJ, Whitton PS (1992a) Regional effects of sodium valproate on extracellular concentrations of 5-hydroxytryptamine, dopamine, and their metabolites in the rat brain: an in vivo microdialysis study. JNeurochem 59: 1702–1708

    Article  CAS  Google Scholar 

  175. Nagao T, Oshimo T, Mitsunobo K, Sato M, Otsuki S (1979) Cerebrospinal fluid monoamine metabolites and cyclic nucleotides in chronic schizophrenic patients witgh tardive dyskinesia or drug-induced tremor. Biol Psychiatr 14: 509–523

    CAS  Google Scholar 

  176. Lust WD, Kupferberg HJ, Yonekawa WD, Penry JK, Passoneau JV, Wheaton AB (1978) Changes in brain metabolites induced by convulsants or electroshock: effects of anticonvulsant agents. Mol Pharmacol 14: 347–356

    PubMed  CAS  Google Scholar 

  177. McCandless DW, Feussner GK, Lust WD, Passoneau JV (1979) Metabolite levels in brain following experimental seizures: the effects of isoniazid and sodium valproate in cerebellar and cerebral cortical layers. JNeurochem 32: 755–760

    Article  CAS  Google Scholar 

  178. Maes M, Calabrese J, Jayathilake K, Meltzer HY (1997) Effects of subchronic treatment with valproate on L-5-HTP-induced cortisol responses in mania: Evidence for increased central serotonergic neurotransmission. Psychiatry Res 71: 67–76

    Article  PubMed  CAS  Google Scholar 

  179. Nathanson JA (1977) Cyclic nucleotides and nervous system function. Physiol Rev 57: 157–256

    PubMed  CAS  Google Scholar 

  180. Trabucchi M, Cerri C, Spano PF, Kumakura K (1977) Guanosine 3’,5’-monophosphate in the CSF of neurological patients. Arch Neurol 34: 12–13

    Article  PubMed  CAS  Google Scholar 

  181. Nau H, Löscher W (1984) Valproic acid and metabolites: Pharmacological and toxicological studies. Epilepsia 25(1): 14–22

    Article  CAS  Google Scholar 

  182. Semmes RLO, Shen DD (1991) Comparative pharmacodynamics and brain distribution of E-&-valproate and valproate in rats. Epilepsia 32: 232–241

    Article  PubMed  CAS  Google Scholar 

  183. Löscher W (1992) Pharmacological, toxicological and neurochemical effects of A2 -valproate in animals. Pharm Weekblad 14: 139–143

    Article  Google Scholar 

  184. Löscher W, Böhme G, Schäfer H, Kochen W (1981) Effect of metabolites of valproic acid on the metabolism of GABA in brain and brain nerve endings. Neuropharmacology 20: 1187–1192

    Article  PubMed  Google Scholar 

  185. Wamil AW, Löscher W, Mclean MJ (1997) Trans-2-en-valproic acid limits action potential firing frequency in mouse central neurons in cell culture. J Pharmacol Exp Ther 280: 1349–1356

    PubMed  CAS  Google Scholar 

  186. Löscher W, Hönack D (1996) Valproate and its major metabolite E-2-en-valproate induce different effects on behaviour and brain monoamine metabolism in rats. Eur J Pharmacol 299: 61–67

    Article  PubMed  Google Scholar 

  187. Löscher W, Nau H (1982) Valproic acid: metabolite concentrations in plasma and brain, anticonvulsant activity, and effects on GABA metabolism during subacute treatment in mice. Arch Int Pharmacodyn Ther 257: 20–31

    PubMed  Google Scholar 

  188. Frey H-H, Löscher W (1978) Distribution of valproate across the interface between blood and cerebrospinal fluid. Neuropharmacology 17: 637–642

    Article  PubMed  CAS  Google Scholar 

  189. Adkison KDK, Shen DD (1996) Uptake of valproic acid into rat brain is mediated by a medium-chain fatty acid transporter. J Pharmacol Exp Ther 276: 1189–1200

    PubMed  CAS  Google Scholar 

  190. Cutrer FM, Limmroth V, Moskowitz MA (1997) Possible mechanisms of valproate in migraine prophylaxis. Cephalalgia 17 93–100

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Basel AG

About this chapter

Cite this chapter

Löscher, W. (1999). Pharmacological effects and mechanisms of action. In: Löscher, W. (eds) Valproate. Milestones in Drug Therapy. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8759-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8759-5_2

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9761-7

  • Online ISBN: 978-3-0348-8759-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics