Skip to main content

The failure of clinical trials in sepsis: Challenges of pre-clinical models

  • Chapter
Cytokines in Severe Sepsis and Septic Shock

Part of the book series: Progress in Inflammation Research ((PIR))

  • 97 Accesses

Abstract

Perhaps no clinical problem lacking effective therapy has been as extensively studied as sepsis. A MEDLINE search under the MESH heading, “sepsis”, currently yields more than 35,000 references, including in vitro studies, in vivo animal studies, and human clinical trials. To date, no effective mediator-directed therapy is available. Promising compounds, with impressive preclinical efficacy and preliminary human benefit in phase II studies, have failed to improve outcome in well-conducted phase III randomized, controlled trials. The potential reasons for these disappointing results are many [1–4]. An important factor has been the applicability of inferences drawn from pre-clinical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abraham E, Raffin T (1994) Sepsis therapy trials. Continued disappointment or reason for hope? JAMA 271: 1876–1878

    Article  PubMed  CAS  Google Scholar 

  2. Bone RC (1996) Why sepsis trials fail. JAMA 276, 7: 565–566

    Article  PubMed  CAS  Google Scholar 

  3. Vincent JL (1997) Clinical trials in sepsis: where do we stand? J Crit Care 12: 3–6, 1997

    Article  PubMed  CAS  Google Scholar 

  4. Marshall JC (1998) The failure of clinical trials in sepsis: Challenges of pre-clinical models. This volume

    Google Scholar 

  5. Wichterman KA, Baue AE, Chaudry IH (1980) Sepsis and septic shock - a review of laboratory models and a proposal. J Surg Res 29: 189–201

    Article  PubMed  CAS  Google Scholar 

  6. Fink MP, Heard SO (1990) Laboratory models of sepsis and septic shock. J Surg Res 49:186–196

    Article  PubMed  CAS  Google Scholar 

  7. Redl H, Schlag G, Bahrami S, Yao YM (1996) Animal models as the basis of pharmacologic intervention in trauma and sepsis patients. World J Surg 20: 487–492

    Article  PubMed  CAS  Google Scholar 

  8. Marchant A, Bruyns C, Vandenabeele P, Ducarme M, Gerard C, Delvaux A et al (1994) Interleukin-10 controls interferon-gamma and tumor necrosis factor production during experimental endotoxemia. Eur J Immunol 24: 1167–1171

    Article  PubMed  CAS  Google Scholar 

  9. Standiford TJ, Strieter RM, Lukacs NW, Kunkel SL (1995) Neutralization of IL-10increases lethality in endotoxemia. Co-operative effects of macrophage inflammatory protein-2 and tumor necrosis factor. J Immunol 155: 2222–2229

    PubMed  CAS  Google Scholar 

  10. Greenberger MJ, Strieter RM, Kunkel SL, Danforth JM, Goodman RE, Standford TJ (1995) Neutralization of IL-10 increases survival in a model of Klebsiella pneumonia. J Immunol 155: 722–729

    PubMed  CAS  Google Scholar 

  11. van der Poll T, Marchant A, Keogh CV, Goldman M, Lowry SF (1996) Interleukin-10 impairs host defense in murine pneumococcal pneumonia. J Infect Dis 174: 994–100

    Article  PubMed  Google Scholar 

  12. Kelly JP, Bancroft BJ (1996) Administration of interleukin-10 abolishes innate resistance to Listeria monocytogenes. Eur J Immunol 26: 356–364

    CAS  Google Scholar 

  13. van der Poll T, Marchant A, Buurman WA, Berman L, Keogh CV, Lazarus et al (1995) Endogenous interleukin-10 protects mice from death during septic peritonitis. J Immunol 155: 5397–5401

    PubMed  Google Scholar 

  14. Walley KR, Lukacs NW, Standiford TJ, Strieter RM, Kunkel SL (1996) Balance of inflammatory cytokines related to severity and mortality of murine sepsis. Infect Immun 64: 4733–4738

    PubMed  CAS  Google Scholar 

  15. Beutler B, Milsark IW, Cerami AC (1985) Passive immunization against cachectin/tumor necrosis factor protects mice from lethal effects of endotoxin. Science 229: 869–871

    Article  PubMed  CAS  Google Scholar 

  16. Evans TJ, Moyes D, Carpenter A, Martin R, Loetscher H, Lesslauer W et al (1994) Protective effect of 55- but not 75-kD soluble tumor necrosis factor-immunoglobulin G fusion proteins in an animal model of Gram negative sepsis. J Exp Med 180: 2173–2179

    Article  PubMed  CAS  Google Scholar 

  17. Nakano Y, Shirai M, Mori N, Nakano M (1991) Neutralization of microcystin shock in mice by tumor necrosis factor alpha antiserum. Appl Env Microbiol 57: 327–330

    CAS  Google Scholar 

  18. Cross AS, Sadoff JC, Kelly N, Bernton E, Gemski P (1989) Pretreatment with recombinant murine tumor necrosis factor alpha/cachectin and murine interleukin 1 alpha protects mice from lethal bacterial infection. J Exp Med 169: 2021–2027

    Article  PubMed  CAS  Google Scholar 

  19. Takashima K, Tateda K, Matsumoto T, Iizawa Y, Nakao M, Yamaguchi K (1997) Role of tumor necrosis factor alpha in pathogenesis of pneumococcal pneumonia in mice. Infect Immun 65: 257–260

    PubMed  CAS  Google Scholar 

  20. Eskandari MK, Bolgos G, Miller C, Nguyen DT, DeForge LE, Remick DG (1992) Antitumor necrosis factor antibody therapy fails to prevent lethality after cecal ligation and puncture or endotoxemia. J Immunol 148: 2724–2730

    PubMed  CAS  Google Scholar 

  21. Evans GF, Snyder YM, Butler LD, Zuckerman SH (1989) Differential expression of interleukin-1 and tumor necrosis factor in murine septic shock models. Circ Shock 29: 279–290

    PubMed  CAS  Google Scholar 

  22. Echtenacher B, Falk W, Mannel DN, Krammer PH (1990) Requirement of endogenous tumor necrosis factor/cachectin for recovery from experimental peritonitis. J Immunol 145: 3762–3766

    PubMed  CAS  Google Scholar 

  23. Watts C (1997) Immunology. Inside the gearbox of the dendritic cell. Nature 388: 724–725

    Article  PubMed  CAS  Google Scholar 

  24. Zollner O, Lenter MC, Blanks JE, Borges E, Steegmaier M, Zerwes HG et al (1997) Lselectin from human, but not from mouse neutrophils binds directly to E-selectin. J Cell Biol 136: 707–716

    Article  CAS  Google Scholar 

  25. Vas SI, Roy RS, Hobson HG (1973) Endotoxin sensitivity of inbred mouse strains. Can J Microbiol 19: 767–769

    Article  PubMed  CAS  Google Scholar 

  26. Hagberg L, Hull R, Hull S, McGhee JR, Michalek SM, Svanborg EC (1984) Difference in susceptibility to gram-negative urinary tract infection between C3H/HeJ and C3H/HeN mice. Infect Immun 46: 839–844

    PubMed  CAS  Google Scholar 

  27. Galanos C, Freudenberg MA, Reutter W (1979) Galactosamine-induced sensitization to the lethal effects of endotoxin. Proc Natl Acad Sci 76: 5939–5943

    Article  PubMed  CAS  Google Scholar 

  28. Fink MP, Baggs AG (1997) Animal models of sepsis and septic shock. In: Fein AM, Abraham E, Balk R, Bernard GR, Bone R, Dantzker DR, Fink MP (eds): Sepsis and multiorgan failure. Williams and Wilkins, Baltimore, 596–613

    Google Scholar 

  29. Westendorp RG, Langermans JA, Huizinga TW, Elouali AH, Verwij CL, Boomsma DI, Vandenbrouke JP (1997) Genetic influence on cytokine production and fatal meningococcal disease. Lancet 349: 170–173

    Article  PubMed  CAS  Google Scholar 

  30. Stuber F, Petersen M, Bokelmann F, Schade U (1996) A genomic polymorphism within the tumor necrosis factor locus influences plasma tumor necrosis factor-alpha concentrations and outcome of paients with severe sepsis. Crit Care Med 24: 381–384

    Article  PubMed  CAS  Google Scholar 

  31. Fernandes DM, Jiang X, Jung JH, Baldwin CL (1996) Comparison of T cell cytokines in resistant and susceptible mice infected wth virulent Brucella abortus strain 2308 FEMS Immunol. Med. Microbiol. 16: 193–203

    CAS  Google Scholar 

  32. Sultzer BM, Castagna R, Bandekar J, Wong P (1993) Lipopolysaccharide nonresponder cells: the C3H HeJ defect. Immunobiol 187: 257–271

    Article  CAS  Google Scholar 

  33. Amura CR, Chen LC, Hirohashi N, Lei MG, Morrison DC (1997) Two functionally independent pathways for lipopolysaccharide-dependent activation of mouse peritoneal macrophages. J Immunol 159: 5079–5083

    PubMed  CAS  Google Scholar 

  34. Thieblemont N, Wright SD (1997) Mice genetically hyporesponsive to lipopolysaccharide (LPS) exhibit a defect in endocytic uptake of LPS and ceramide. J Exp Med 185: 2095–2100

    Article  PubMed  CAS  Google Scholar 

  35. Nagata S, Suda T (1995) Fas and Fas ligand: 1pr and gld mutations. Immunol Today 16: 39–43

    Article  PubMed  CAS  Google Scholar 

  36. Kaufmann SH, Ladel CH (1994) Application of knockout mice to the experimental analysis of infections with bacteria and protozoa. Trends Microbiol 2: 235–242

    Article  PubMed  CAS  Google Scholar 

  37. Pfeffer K, Matsuyama T, Kundig M, Wakeham A, Kishihara K, Shahinian A, Wiegmann K, Ohashi PS, Kronke M, Mak TW (1993) Mice deficient for the 55 kd tumor necrosis factor receptor are resistant to endotoxic shock, yet succumb to L. Monocytogenes infection. Cell 73: 457–467

    Article  PubMed  CAS  Google Scholar 

  38. Shastry BS (1995) Genetic knockouts in mice: an update. Experientia 51: 1028–1039

    Article  PubMed  CAS  Google Scholar 

  39. Rosenberg MP (1997) Gene knockout and transgenic technologies in risk assessment: the next generation. Molecular Carcinogenesis 20: 262–274

    Article  PubMed  CAS  Google Scholar 

  40. Hirsch E, Irikura VM, Paul SM, Hirsh D (1996) Functions of interleukin 1 receptor antagonist in gene knockout and overproducing mice. Proc Natl Acad Sci USA 93: 11008–11013

    Article  PubMed  CAS  Google Scholar 

  41. Cusumano V, Genovese F, Mancuso G, Carbone M, Fera MT, Teti G (1996) Interleukin10 protects neonatal mice from lethal group B streptococcal infection. Infect Immun 64: 2850–2852

    PubMed  CAS  Google Scholar 

  42. van der Poll T, Marchant A, Keogh CV, Goldman M, Lowry SF (1996) Interleukin-10 impairs host defense in murine pneumococcal pneumonia. J Infect Dis 174: 994–1000

    Article  PubMed  Google Scholar 

  43. Takashima K, Tateda K, Matsumoto T, Iizawa Y, Nakao M, Yamaguchi K (1997) Role of tumor necrosis factor alpha in pathognesis of pneumococcal pneumonia in mice Infect Immun 65: 257–260

    PubMed  CAS  Google Scholar 

  44. Nakano Y, Shirai M, Mori N, Nakano M (1991) Neutralization of microcystin shock in mice by tumor necrosis factor alpha antiserum. Appl Environ Microbio! 57: 327–330

    PubMed  CAS  Google Scholar 

  45. Miura S, Takimoto H, Yoshikai Y, Kumazawa Y, Yamada A, Nomoto K (1992) Protective effect of ren-shen-yang-rong-tang (Ninjin-youei-to) in mice with drug-induced leukopenia against Pseudomonas aeruginosa infection. Int J Immunopharmaco! 14: 1249–1257

    Article  PubMed  CAS  Google Scholar 

  46. Frank U, Chambers HF (1996) Treatment of Staphylococcus aureus catheter-related infection and infective endocarditis with granulocyte colony-stimulating factor in the experimental rabbit model. Antimicrob Agents Chemother 40: 1308–1310

    PubMed  CAS  Google Scholar 

  47. Cross AS, Opal SM, Sadoff JC, Gemski P (1993) Choice of bacteria in animal models of sepsis. Infect Immun 61: 2741–2747

    PubMed  CAS  Google Scholar 

  48. Kato T, Murata A, Ishida H, Toda H, Tanaka N, Hayashida H, Monden N, Matsuura N (1995) Interleukin 10 reduces mortality from severe peritonitis in mice. Antimicrob Agents Chemother 39: 1336–1340

    Article  PubMed  CAS  Google Scholar 

  49. Natanson C, Danner RL, Reilly JM (1990) Antibiotics versus cardiovascular support in a canine model of human septic shock. Am J Physiol 259: H1440–H1447

    PubMed  Google Scholar 

  50. Bohnen JM, Matlow AG, Mustard RA, Christie NA, Kavouris B (1988) Antibiotic efficacy in intraabdominal sepsis: a clinically relevant model. Can J Microbio! 34: 323–326.

    Article  PubMed  CAS  Google Scholar 

  51. Martin CM, Sibbald WJ (1994) Modulation of hemodynamics and organ blood flow by nitric oxide synthase inhibition is not altered in normotensive, septic rats. Am J Resp Crit Care Med 150: 1539–1544

    PubMed  CAS  Google Scholar 

  52. Schwieterman W, Roberts R (1997) Outcome measures for sepsis trials: The FDA perspective. Sepsis 1: 69

    Article  Google Scholar 

  53. Quartin AA, Schein RM, Kett DH, Peduzzi PN (1997) Magnitude and duration of the effect of sepsis on survival. JAMA 277: 1058–1063

    Article  PubMed  CAS  Google Scholar 

  54. Norman J (1998) Pancreatitis as a model of sepsis. Sepsis; in press

    Google Scholar 

  55. Piper RD, Cook DJ, Bone RC, Sibbald WJ (1996) Introducing critical appraisal to studies of animal models investigating novel therapies in sepsis. Crit Care Med 24: 2059–2070

    Article  PubMed  CAS  Google Scholar 

  56. Nieuwenhuijzen GAP, Haskel Y, Lu Q, Berg RD, van Rooijen N, Goris RJA, Deitch EA (1993) Macrophage elimination increases bacterial translocation but attenuates symptoms and mortality rate in a model of systemic inflammation. Arch Surg 218: 791–799

    CAS  Google Scholar 

  57. Opal SM, Cross AS, Jhung JW, Young LD, Palardy JE, Parejo NA et al (1996) Potential hazards of combination immunotherapy in the treatment of experimental septic shock. J Infect Dis 173: 1415–1421

    Article  PubMed  CAS  Google Scholar 

  58. Sevransky JE, Shaked G, Novogrodsky A, Levitzki A, Gazit A, Hoffman A, lin RJ, Quezado ZMN, Freeman BD, Eichacker PQ, Danner RL, Banks SM, Bacher J, Thomas ML, Natanson C (1997) Tyrphostin AG 556 improves survival and reduces multiorgan failure in canine Escherichia coli peritonitis. J Clin Invest 99: 1966–1973

    Article  PubMed  CAS  Google Scholar 

  59. Pajkrt D, Manten A, van der Poll T, Tiel-van Buul MMC, Jansen J, Wouter ten Cate J, van Deventer SJH (1997) Modulation of cytokine release and neutrophil function by granulocyte colony-stimulating factor during endotoxemia in humans. Blood 90: 1415–1424

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Basel AG

About this chapter

Cite this chapter

Creery, D., Marshall, J.C. (1999). The failure of clinical trials in sepsis: Challenges of pre-clinical models. In: Redl, H., Schlag, G. (eds) Cytokines in Severe Sepsis and Septic Shock. Progress in Inflammation Research. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8755-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8755-7_19

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9759-4

  • Online ISBN: 978-3-0348-8755-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics