Skip to main content

Immunomodulation following shock and sepsis

  • Chapter
  • 98 Accesses

Part of the book series: Progress in Inflammation Research ((PIR))

Abstract

Despite the introduction of broad-spectrum antibiotics, sepsis is one of the most important causes of multiple organ failure (MOF) which accounts for 70,000 deaths in the USA each year [1]. Infection is also an important cause of mortality in the severely traumatized patient and is responsible for 50–70% of all burn-related deaths [2–3].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fry DE, Pearlstein L, Fulton RL, Polk HC Jr. (1980) Multiple system organ failure. The role of uncontrolled infection. Arch Surg 115:136–140

    Article  PubMed  CAS  Google Scholar 

  2. Polk HC Jr (1979) Consensus summary on infection. J Trauma 19: 894–896

    PubMed  CAS  Google Scholar 

  3. Curreri PW, Luterman A, Braun DW, Shires GT (1980) Burn injury. Analysis of survival and hospitalization time for 937 patients. Ann Surg 192: 472–478

    Article  PubMed  CAS  Google Scholar 

  4. Redl H, Nikolai A, Kneidinger R, Schlag G (1993) Endothelial and leukocyte activation in experimental polytrauma and sepsis. Behring Inst Mitt 92: 218–228

    CAS  Google Scholar 

  5. Molloy RG, Mannick JA, Rodrick ML (1993) Cytokines, sepsis and immunomodula-tion. Br J Surg 80 289–297

    Article  PubMed  CAS  Google Scholar 

  6. Cerami A (1992) Inflammatory Cytokines. Clin Immunol Immunopathol 62: S3–S10

    Article  PubMed  CAS  Google Scholar 

  7. Baue AE (1994) Multiple organ failure, multiple organ dysfunction syndrome, and the systemic inflammatory response syndrome - where do we stand? Shock 2: 385–397

    Article  PubMed  CAS  Google Scholar 

  8. Baron RL (1993) Pathophysiolory of septic shock and implications for therapy. Clin Pharm 12: 829–845

    Google Scholar 

  9. Chaudry IH (1983) Cellular mechanisms in shock and ischemia and their correction. Am J Physiol 245: R117–R134

    PubMed  CAS  Google Scholar 

  10. Harkema JM, Chaudry IH (1992) Magnesium-adenosine triphosphate in the treatment of shock, ischemia, and sepsis. Crit Care Med 20: 263–275

    Article  PubMed  CAS  Google Scholar 

  11. Hirasawa H, Sugai T, Ohtake Y et al (1990) Energy metabolism and nutritional support in anuric multiple organ failure patients. In: Tanaka T, Okada A (eds): Nutritional support in organ failure. Elsevier, Amsterdam, 439–446

    Google Scholar 

  12. Liebscher G, Shapiro MJ, Barner H, Daake C, Moskoff M, Durham RM, Baue AE: ATP-MgCl2 as and afterload reducing agent. Crit Care Med 1992; 21: S200 (abstract)

    Google Scholar 

  13. Meldurm DR, Ayala A, Chaudry IH (1994) Energetics of lymphocyte “burnout” in late sepsis: Adjuvant treatment with ATP-MgCl2 improves energetics and decreases lethality. J Surg Res 56: 537–542

    Article  Google Scholar 

  14. Harkema JM, Singh G, Wang P, Chaudry IH (1992) Pharmacologic agents in the treatment of ischemia, hemorrhagic shock, and sepsis. J Crit Care 7: 189–216

    Article  Google Scholar 

  15. Wang P, Wood TH, Ba ZF, Chaudry IH (1996) Depressed vascular endothelial cell function during hyperdynamic sepsis: restoration with ATP-MgCl2 administration. Surg Forum 47: 48–50

    CAS  Google Scholar 

  16. Wang P, Chaudry IH (1996) Editorial review: Mechanism of hepatocellular dysfunction during hyperdynamic sepsis. Am J Physiol 270: R927–R938

    PubMed  CAS  Google Scholar 

  17. Wang P, Ba ZF, Reich SS, Zhou M, Holme KR, Chaudry IH (1996) Effects of nonanticoagulant heparin on cardiovascular and hepatocellular function after hemorrhagic shock. Am J Physiol 270: H1294–H1302

    PubMed  CAS  Google Scholar 

  18. Zellweger R, Ayala A, Zhu XL, Holme KR, DeMaso CM, Chaudry IH (1995) A novel non-anticoagulant heparin improves splenocyte and peritoneal macrophage immune function after trauma-hemorrhage and resuscitation. J Surg Res 59: 211–218

    Article  PubMed  CAS  Google Scholar 

  19. Morrison AM, Wang P, Chaudry IH (1996) A novel nonanticoagulant heparin prevents vascular endothelial cell dysfunction during hyperdynamic sepsis. Shock 6: 46–51

    Article  PubMed  CAS  Google Scholar 

  20. Maitra SR, Sayeed MM (1987) Effect of diltiazem on intracellular Ca2+ mobilization in hepatocytes during endotoxic shock. Am J Physiol 253: R545–R548

    PubMed  CAS  Google Scholar 

  21. Hess ML, Warner MF, Smith JM, Manson NH, Greenfield LJ (1983) Improved myocardial hemodynamic and cellular function with calcium channel blockade (verapamil) during canine hemorrhagic shock. Circ Shock 10: 119–130

    PubMed  CAS  Google Scholar 

  22. Westfall MV, Sayeed MM (1989) Effect of diltiazem on skeletal muscle 3–0-methylglucose transport in bacteremic rats. Am J Physiol 256: R716–R721

    PubMed  CAS  Google Scholar 

  23. Meldrum DR, Ayala A, Perrin MM, Ertel W, Chaudry IH (1991) Diltiazem restores IL-2, IL-3, IL-6 and IFN-gamma synthesis and decreases susceptibility to sepsis following hemorrhage. J Surg Res 51:158–164

    Article  PubMed  CAS  Google Scholar 

  24. Rollo IM (1980) Drugs used in the chemotherapy of malaria. In: Goodman LS, Gilman AG (eds): Pharmacological basis of therapeutics. MacMillan Publishing, New York, 1038–1060

    Google Scholar 

  25. Freedman A (1956) Chloroquine and rheumatoid arthritis: short term controlled trial. Ann Rheum Dis 15: 251–257

    Article  PubMed  CAS  Google Scholar 

  26. Authi KS, Tragnor JR (1979) Effects of anti-malarial drugs on phospholipase A2. Br J Pharmacol 66: 496–501

    Google Scholar 

  27. Ertel W, Morrison MH, Ayala A, Chaudry IH (1991) Chloroquine attenuates hemorrhagic shock-induced suppression of Kupffer cell antigen presentation and major histocompatibility complex class II antigen expression through blockade of tumor necrosis factor and prostaglandin release. Blood 7: 1781–1788

    Google Scholar 

  28. Ertel W, Morrison MH, Ayala A, Chaudry IH (1992) Chloroquine attenuates hemorrhagic shock induced immunosuppression and decreases susceptibility to sepsis. Arch Surg 127: 70–76

    Article  PubMed  CAS  Google Scholar 

  29. Zhu X, Ertel W, Ayala A, Morrison MH, Perrin MM, Chaudry IH (1993) Chloroquine inhibits macrophage tumor necrosis factor-α mRNA transcription. Immunology 80: 122–126

    PubMed  CAS  Google Scholar 

  30. Faist E, Mewes A, Bader CC, Strasser T, Alkan SS, Rieber P, Heberer G (1987) Prostaglandin E2 dependent suppression of interleukin-2 production in patients with major trauma. J Trauma 27: 837–848

    Article  PubMed  CAS  Google Scholar 

  31. Miller-Graziano CL, Fink M, Wu JY, Szabo G, Kodys K (1988) Mechanisms of altered monocyte prostaglandin E2 production in severely injured patients. Arch Surg 123: 293–299

    Article  PubMed  CAS  Google Scholar 

  32. Walker C, Kristensen F, Bettens F, DeWeck AL (1983) Lymphokine regulation of activated (G1) lymphocytes: prostaglandin E2-induced inhibition of interleukin 2 production. J Immunol 130: 1770–1773

    PubMed  CAS  Google Scholar 

  33. Knapp W, Baumgartner G (1978) Monocyte-mediated suppression of human B lymphocyte differentiation in vitro. J Immunol 121: 1177–1183

    CAS  Google Scholar 

  34. Ertel W, Morrison MH, Meldrum DR, Ayah A, Chaudry IH (1992) Ibuprofen restores cellular immunity and decreases susceptibility to sepsis following hemorrhage. J Surg Res 53: 55–61

    Article  PubMed  CAS  Google Scholar 

  35. Faist E, Markewith A, Endres S, Fuchs D, Hültner L, Lang (1993) Progress in anti-infective perioperative immunomodulatory therapy with simultaneous administration of blocking and enhancing agent. In: Faist E, Meakins J, Schildberg FW (eds): Host defense dysfunction in trauma, shock and sepsis. Springer-Verlag, Berlin, Heidelberg, 1109–1129

    Chapter  Google Scholar 

  36. Vadas P, Przanski W, Stefanski E (1988) Pathogenesis of hypotension in septic shock: correlation of circulating phospholipase A2 levels with circulatory collapse. Crit Care Med 16: 1–7

    Article  PubMed  CAS  Google Scholar 

  37. Dennis EA, Rhee SG, Billah MM, Hannun A (1991) Role of phospholipase in generating lipid second messengers in signal transduction. Faseb J 5: 2068 (abstract)

    PubMed  CAS  Google Scholar 

  38. Mansbach CM (1990) Phospholipases: old enzymes with new meaning. Gastroenterology 98: 1369–1382

    PubMed  CAS  Google Scholar 

  39. Koike K, Moore EE, Moore FA, Carl VS, Pitman JM, Banerjee A (1992) Phospholipase A2 inhibition decouples lung injury from gut ischemia reperfusion. Surgery 112: 173–178

    PubMed  CAS  Google Scholar 

  40. Redl H, Schlag G, Schiesser A, Davies J (1993) Tumor necrosis factor is a mediator of phospholipase release during bacteremia in baboons. Am J Physiol 264: H2119

    PubMed  CAS  Google Scholar 

  41. Schlag G, Redl H (1996) Mediators of Injury and Inflammation. World J Surg 20: 406–410

    Article  PubMed  CAS  Google Scholar 

  42. Hosford D, Koltai M, Braquet P (1993) Platelet-activating factor in shock, sepsis, and organ failure. In: Schlag G, Redl H (eds.): Pathophysiology of shock, sepsis, and organ failure. Springer-Verlag, Berlin, Heidelberg, 502–517

    Chapter  Google Scholar 

  43. Bussolino, F, Procellini MG, Varese L, Bosia A (1987) Intravascular release of platelet-activating factor in children with sepsis. Thromb Res 48: 619–620

    Article  PubMed  CAS  Google Scholar 

  44. Lopez-Diez F, Nieto ML, Femandez-Gallardo S, Gijon MA, Sanchez-Crespo M (1989) Occupancy of platelet receptors for platelet activating factor in patients with septicemia. J Clin Invest 83: 1733–1740

    Article  PubMed  CAS  Google Scholar 

  45. Verhoef J, Hustinx WMN, Frasa H, Hoepelman AIM (1996) Issues in the adjunct therapy of severe Sepsis Antimicrobiol Chemotherapy 38: 167–182

    CAS  Google Scholar 

  46. Zellweger R, Ayala A, Schmand JF, Morrison MH, Chaudry IH (1995) Platelet activating factor antagonist administration after hemorrhage-resuscitation prevents splenocyte immunodepression. J Sur Res 59: 366–370

    Article  CAS  Google Scholar 

  47. Redl H, Vogl C, Schiesser A, Paul E, Thurnher M, Bahrami S, Schlag G (1990) Effect of the PAF antagonist BN 52021 in ovine endotoxin shock. J Lipid Mediat 2 Suppl: S195–S201

    PubMed  CAS  Google Scholar 

  48. Dhainaut JFA, Tenaillon A, Le Tulzo Y, Schlemmer B, Solet JP, Wolff M, Holzappel L, Zeni F, Dreyfuss D, Mira JP, deVathaire F, Guinot P (1994) Platelet activating factor receptor antagonist BN 52021 in the treatment of severe sepsis: a randomized, double-blind, placebo-controlled, multicenter clinical trial. Crit Care Med 22: 1720–1728

    PubMed  CAS  Google Scholar 

  49. Zanders ED, Lamb JR, Feldman M, Green N, Beverlt PCL (1983) Tolerance of T cells is associated with membrane antigen changes. Nature 303: 625–627

    Article  PubMed  CAS  Google Scholar 

  50. Hara T, Fu SM, Hansen JA (1985) Human T cell activation, IL: a new T cell activation pathway used by a major T cell population via a disulfide bonded dimer of a 44-kilodalton peptide (9.3 antigen). J Exp Med 161: 1513–1524

    Article  PubMed  CAS  Google Scholar 

  51. Ledbetter JA, Martin PJ, Spooner CE, Wofsy D, Tsu TT, Beatty PG, Gladstone P (1985) Antibodies to Tp67 and Tp44 augment and sustain proliferative responses of activated T cells. J Immunol 135: 2331–2336

    PubMed  CAS  Google Scholar 

  52. Linsley PS, Ledbetter JA (1993) The role of the CD28 receptor during T cell responses to antigen. Annu Rev Immunol 11: 191–212

    Article  PubMed  CAS  Google Scholar 

  53. Gross JA, Calla E, Allison FP (1992) Identification and distribution of the costimulatory receptorCD28 in the mouse. J Immunol 149: 380–388

    PubMed  CAS  Google Scholar 

  54. Linsley PS, Greene JL, Brady W, Bajorath J, Ledbetter JA, Peach R (1994) Human B7–1 (CD80) and B7–2 (CD86)bind with similar avidities but distinct kinetics to CD28 and CTLA-4 receptors. Immunity 1: 793–801

    Article  PubMed  CAS  Google Scholar 

  55. Green JM, Thompson CB (1994) Modulation of T cell proliferative response by accessory cell interactions. Immunol Res 13: 234–243

    Article  PubMed  CAS  Google Scholar 

  56. Shi Y, Radvanyi LG, Shaw P, Green DR, Miller R, Mills GB (1995) CD28-mediated signaling in vivo prevents activation-induced apoptosis in the thymus and alters peripheral lymphocytes homeostasis. J Immunol 155: 1829–1837

    PubMed  CAS  Google Scholar 

  57. Boise LH, Minn AJ, Noel PJ, June CH, Accavitti MA, Lindsten T, Thompson CB (1995) CD28 costimulation can promote T cell survival by enhancing the expression of Bc1-XL. Immunity 3: 87–98

    Article  PubMed  CAS  Google Scholar 

  58. Wang R, Fang Q, Zhang L, Randvany L, Sharma A, Noben-Trauth N, Mills GB, Shi Y (1997) CD 28 ligation prevents bacterial toxin-induced septic shock in mice by inducing IL-10 expression. J Immunol 158: 2856–2861

    PubMed  CAS  Google Scholar 

  59. Livingston DH, Malangoni M (1988) Interferon-gamma restores immune competence after hemorrhagic shock. J Surg Res 45: 37–43

    Article  PubMed  CAS  Google Scholar 

  60. Malangoni MA, Livingston DH, Sonnenfeld G, Polk HC (1990) Interferon gamma and tumor necrosis factor alpha. Arch Surg 125: 444–446

    Article  PubMed  CAS  Google Scholar 

  61. Hersham MJ, Pietsch JD, Trachtenberg L, Mooney THR, Shields RE, Sonnenfeld G (1989) Protective effects of recombinant human tumor necrosis factor alpha and interferon against surgically simulated wound infection in mice. Br J Surg 76: 1282–1286

    Article  Google Scholar 

  62. Ertel W, Morrison MH, Ayala A, Dean RE, Chaudry IH (1992) Interferon-gamma attenuates hemorrhage induced suppression of macrophage and splenocyte functions and decreases susceptibility to sepsis. Surgery 111: 177–187

    PubMed  CAS  Google Scholar 

  63. Arkins S, Dantzer R, Kellew KW (1993) Somatolactogens, somatomedins, and immunity. J Dair Sc 76: 2437–2450

    Article  CAS  Google Scholar 

  64. Chwals WJ, Bistrian BR (1991) Role of exogenous growth hormone and insulin-like growth factor I in malnutrition and acute metabolic stress: a hypothesis. Crit Care Med. 19: 1317–1322

    Article  PubMed  CAS  Google Scholar 

  65. Voerman HJ, Strack van Schijndel RJM, de Boer H, van der Veen EA, Thijs LG (1992) Growth hormone: secretion and administration in catabolic adult patients, with emphasis on the critically ill patient. Neth J Med 41: 229–244

    PubMed  CAS  Google Scholar 

  66. Inoue T, Saito H, Fukushima R, Inaba T, Lin MT, Fukatsu K, Muto T (1995) Growth Hormone and insulin-like growth factor I enhance host defense in a murine sepsis model. Arch Surg 130: 1115–1122

    Article  PubMed  CAS  Google Scholar 

  67. Means RT, Krantz SB (1992) Progress in understanding the pathogenesis of the anemia of chronic disease. Blood 80: 1639–1647

    PubMed  Google Scholar 

  68. Faquin WC, Schneider TJ, Goldberg MA (1992) Effect of inflammatory cytokines on hypoxia-induced erythropoietin production. Blood 79: 1987–1994

    PubMed  CAS  Google Scholar 

  69. Jelkmann W, Pagel H, Wolff M, Fandrey J (1992) Monokines inhibiting erythropoietin production in human hepatoma cultures and in isolated perfused rat kidneys. Life Sci 50: 301–308

    Article  PubMed  CAS  Google Scholar 

  70. Fandrey, Huwiler A, Frede S, Pfeilschifter J, Jelkmann W (1994) Distinct signaling pathways mediate phorbol-ester-induced and cytokine-induced inhibition of erythropoietin gene expression. Eur J Biochem 226: 335–340

    Article  CAS  Google Scholar 

  71. Parrillo J (1993) Pathogenetic mechanisms of septic shock. N Engl J Med 328: 1471–1477

    Article  PubMed  CAS  Google Scholar 

  72. Waage A, Brandtzag P, Halstensen A, Kierulf P, Espevik T (1989) The complex pattern of cytokines in serum from patients with menigococcal septic shock. J Exp Med 169: 333–338

    Article  PubMed  CAS  Google Scholar 

  73. Endo S, Inada K, Inoue Y, Kuwata Y, Suzuki M, Yamashita H, Hoshi S, Yosshida M (1992) Two types of septic shock classified by the plasma levels of cytokines and endotoxin. Circ Shock 38: 264–274

    PubMed  CAS  Google Scholar 

  74. Damas P, Lesoux D, Nys M, Vrindts Y, DeGroote D, Franchimont P (1992) Cytokines serum level during severe sepsis in human II-6 as a marker of severity. Ann Surg 215: 356–362

    Article  PubMed  CAS  Google Scholar 

  75. Calandra T, Gerain J, Heumann D, Baumgartner Jd, Glauser MP (1991) High circulating levels of interleukin-6 in patients with septic shock: evolution during sepsis, prognostic value, and interplay with other cytokines. Am J Med 91: 23–29

    Article  PubMed  CAS  Google Scholar 

  76. Jelkmann W (1992) Erythropoietin: structure, control of production, and function. Physiol Rev 72: 449–489

    PubMed  CAS  Google Scholar 

  77. Soboleva MK, Manakova TE (1993) Plasma erythropoietin activity in infants with sepsis. Bull Exp Biol Med 115: 545–548

    Google Scholar 

  78. Abel J, Spannbrucker N, Fandrey J, Jelkmann W (1996) Serum erythropoietin levels with sepsis and septic shock. Eur J Haemato 57: 359–363

    Article  CAS  Google Scholar 

  79. Jelkmann W, Fandrey J, Frede S, Pagel H (1994) Inhibition of erythropoietin production by cytokines. Implications for the anemia involved in inflammatory states. Ann NY Acad Sci 718: 300–309

    Article  PubMed  CAS  Google Scholar 

  80. Kremer JM, Bigauoette J, Michaled AV, Timchalk MA, Lininger L, Rynes RI, Huyck C, Zieminsk J, Bartholomew LE (1985): Effects of manipulation of dietary fatty acids on clinical manifestations of rheumatoid arthritis. Lancet i: 184–187

    Article  Google Scholar 

  81. Robinson DR, Prickett JD, Polisson R, Steinberg AD, Levine L (1985) The protective effect of dietary fish oil on murine lupus. Prostaglandins 30:51–75

    Article  PubMed  CAS  Google Scholar 

  82. Cathcart ES, Leslie CA, Meydani SN, Hayes KC (1987) A fish oil diet retards experimental amyloidosis, modulates lymphocyte function and decreases macrophages arachidonate metabolism in mice. J Immunol 139: 1850–1854

    PubMed  CAS  Google Scholar 

  83. Endres S, Ghorbani R, Kellew VE, Georgilis K, Lonnemann G, Van deer Meer JW, Cannon JG, Rogers TS, Klempner MS, Weber PC, Schaefer EJ, Wolff SM, Dinarello CA (1989) The effect of dietary supplementation with n-3 polyunsaturated fatty acids on the synthesis of interleukin-1 and tumor necrosis factor by mononuclear cells. N Engl J Med 320: 265–271

    Article  PubMed  CAS  Google Scholar 

  84. Biliar TR, Bankey PE, Swingen BA, Curran RD, West MA, Holman RT, Simmons RL, Cerra FB (1988) Fatty acid intake and Kupffer cell function: fish oil alters eicosanoid and monokine production to endotoxin stimulation. Surgery 104: 343–349

    Google Scholar 

  85. Lokesh BR, Sayers TJ, Kinsella JE (1990) Interleukin-1 and tumor necrosis factor synthesis by mouse peritoneal macrophages is enhanced by dietary n-3 polyunsaturated fatty acids. Immunol Letters 23: 281–286

    Article  CAS  Google Scholar 

  86. Barton RG, Wells CL, Carlson A, Singh R, Sullivan JJ, Cerra FB (1991) Dietary omega-3 fatty acids decrease mortality and Kupffer cell prostaglandin E2 production in a rat model of chronic sepsis. J Trauma 31: 768–774

    Article  PubMed  CAS  Google Scholar 

  87. Cerra FB, Lehman S, Konstantinides N, Shronts EP, Holman R (1990) Effect of enteral nutrient on in vitro test of immune function in ICU patient: a preliminary report. Nutrition 6: 84–87

    PubMed  CAS  Google Scholar 

  88. Leberman MD, Shou J, Torres AS, Weintraub F, Goldfine J, Sigal R, Daly JM (1990) Effects of nutrient substrates on immune function. Nutrition 6: 88–91

    Google Scholar 

  89. Cerra FB, Lehmann S, Konstantinides N, Dzik J, Fish J, Konstantinides F, LiCari JJ, Holman RT (1991) Improvements in immune function in ICU patients by enteral nutrition supplemented with arginine, RNA and Menhaden Oil is independent of nitrogen balance. Nutrition 7: 193–199

    PubMed  CAS  Google Scholar 

  90. Alexander JW, Gottschlich MM (1990) Nutritional immunomodulation in burn patients. Crit Care Med 18: S149–S153

    Article  PubMed  CAS  Google Scholar 

  91. Bone RC (1992) Toward an epidemiology and natural history of SIRS (systemic inflammatory response syndrome). JAMA 268: 3452–3455

    Article  PubMed  CAS  Google Scholar 

  92. Center for Disease Control: Mortality Patterns - United States, 1989.(1992) Morbidity Mortality Wkly Rpt 41: 121–125

    Google Scholar 

  93. McGowan JE, Barnes MW, Finland N (1975) Bacteremia at Boston City Hospital: occurrence and mortality during 12 selected years (1935–1972) with special reference to hospital-acquired cases. J Infect Dis 132: 316–335

    Article  PubMed  Google Scholar 

  94. Zellweger R, Wichmann MW, Ayala A, Stein S, DeMaso CM, Chaudry IH (1997) Females in proestrus state maintain splenic immune functions and tolerate sepsis better than males. Crit Care Med 25: 106–110

    Article  PubMed  CAS  Google Scholar 

  95. Wichmann M, Zellweger R, DeMaso C, Ayala A, Chaudry IH.(1996) Enchanced immune responses in females, as oppose to decreased responses in males following haemorrhagic shock and resuscitation. Cytokine 8: 853–863

    Article  PubMed  CAS  Google Scholar 

  96. Homo-Delarche F, Fitzpatrick F, Christeff N, Nunez EA, Bach JF, Dardenne M (1991) Sex steroids, glucocorticoids, stress and autoimmunity. J Steroid Biochem Molec Biol 40: 619–637

    Article  PubMed  CAS  Google Scholar 

  97. Wichmann, Ayala A, Chaudry IH (1997) Male sex steriods are responsible for depressing macrophage immune function after trauma-hemorrhage. Am J Physiol 273: C1335–C1340

    PubMed  CAS  Google Scholar 

  98. Luster MI, Pfeifer RW, Tucker AN (1985) Influence of sex hormones on immunoregulation with specific reference to natural and environmental estrogens. In: Thomas JA, Korach KS, McLachlan JA (eds): Endocrine toxicology. Raven Press, New York, 67–83

    Google Scholar 

  99. Zellweger R, Zhu XH, Wichmann MW, Ayala A, DeMaso CM, Chaudry IH (1996) Pro-lactin administration following hemorrhagic shock improves macrophage cytokine release capacity and decreases mortality form subsequent sepsis. J Immunol 157: 5748–5754

    PubMed  CAS  Google Scholar 

  100. Ayala A, Kisala JM, Felt JA, Perrin MM, Chaudry IH (1992) Does endotoxin tolerance prevent the release of inflammatory monokines (IL-1, IL-6, or TNF) during sepsis? Arch Surg 127: 191–197

    Article  PubMed  CAS  Google Scholar 

  101. Ayala A, Chaudry IH. (1996) Immune dysfunction in murine polymicrobial sepsis: mediators, macrophages, lymphocytes and apoptosis. Shock 6: S27–S38

    Article  PubMed  Google Scholar 

  102. Ehrenkranz RA, Ackermann BA (1986) Metoclopramide effect on faltering milk production by mothers of premature infants. Pediatrics 78: 614–620

    PubMed  CAS  Google Scholar 

  103. Zhu ZH, Zellweger R, Wichmann MW, Ayala A, Chaudry IH (1997) Effects of prolactin and metoclopramide on macrophage cytokine gene expression in late sepsis. Cytokine 6 437–446

    Article  Google Scholar 

  104. Wichmann MW, Angele MK, Ayala A, Cioffi WG, Chaudry IH (1997) Flutamide:A novel agent for restoring the depressed cell-mediated immunity following soft-tissue trauma and hemorrhagic shock. Shock 8: 242–248

    Article  PubMed  CAS  Google Scholar 

  105. Angele MK, Wichmann MW, Ayala A, Cioffi WG, Chaudry IH (1997) Testosterone receptor blockade after hemorrhage in males: restoration of the depressed immune functions and improved survival following subsequent sepsis. Arch Surg 132: 1207–124

    Article  PubMed  CAS  Google Scholar 

  106. Mainous MR, Deitch EA (1994) Nutrition and infection. Surg Clin North Am. 74: 659–676

    PubMed  CAS  Google Scholar 

  107. Dunn D (1994) Gram-negative bacterial sepsis and sepsis syndrome. Surg Clin North Am 74: 621–635

    PubMed  CAS  Google Scholar 

  108. Natanson C, Hoffman WD, Suffredini AF, Eichacker PQ, Danner RL (1994) Selected treatment strategies for septic shock based on proposed mechanisms of pathogenesis. Ann Intern Med 120: 771–783

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Basel AG

About this chapter

Cite this chapter

Zellweger, R., Ayala, A., Wang, P., Chaudry, I.H. (1999). Immunomodulation following shock and sepsis. In: Redl, H., Schlag, G. (eds) Cytokines in Severe Sepsis and Septic Shock. Progress in Inflammation Research. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8755-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8755-7_17

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9759-4

  • Online ISBN: 978-3-0348-8755-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics