Skip to main content

Apoptosis: Its role in the systemic inflammatory response syndrome and the involvement of cytokines

  • Chapter
  • 96 Accesses

Part of the book series: Progress in Inflammation Research ((PIR))

Abstract

Death, along with growth, is a critical part of the life cycle of all living things. The loss of leaves during the autumn, as a result of environmental changes during winter, is central to the survival and continued growth of a tree. Harmful levels of UV-radiation from the sun causes damage and death of keratinocytes and resulting sunburn. The death of cells is not always as a result of damage but may occur spontaneously to allow for further development and growth. For plants to conduct fluid, cells that form the xylem must die giving way to hollow tubes. In humans cell death is vital for embryonic development of fingers and toes. Homeostatic control of cell numbers is a result of the dynamic balance between cell proliferation and cell death and essential to maintain a steady volume [1]. Cancer cells have lost their ability to control this balance resulting in an accumulation of cells [2]. Thymocytes that fail to mature with functional receptors are induced to die, thereby limiting the release of none functional cells into the host and preventing autoimmune targeting of the host [3]. During inflammation there is an increased production and accumulation of lymphocytes, monocytes and neutrophils to overwhelm the invading foreign pathogen [4]. This production of inflammatory cells itself can be detrimental or “double edged” to the host due to the overproduction of anti-microbial agents causing tissue damage [5]. The resolution of an inflammatory response is thus important in preventing this host damage. The final step in resolving inflammation is the removal of the influxed cells from the inflammatory site. These must die in situ as they can not migrate from the site [6].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kerr JFR, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics Br J Cancer 26: 239–257

    Article  PubMed  CAS  Google Scholar 

  2. Carson DA, Ribeiro JM (1993) Apotosis and disease. Lancet 341: 1251–1254

    Article  PubMed  CAS  Google Scholar 

  3. Cohen JJ (1992) Apoptosis and programmed cell death in immunity. Ann Rev Immunol 10: 267–293

    Article  CAS  Google Scholar 

  4. Weiss SJ (1989) Tissue destruction by neutrophils. N Engl J Med 320: 365–376

    Article  PubMed  CAS  Google Scholar 

  5. Smith JA (1994) Neutrophils, host defense and inflammation: a double-edged sword. J Leukoc Biol 56: 672–686

    PubMed  CAS  Google Scholar 

  6. Haslett C (1992) Resolution of acute inflammation and the role of apoptosis in the tissue fate of granulocytes. Clin Sci 83: 639–648

    PubMed  CAS  Google Scholar 

  7. Gerschenson LE, Rotello RJ (1992) Apoptosis: a different type of cell death FASEB J 6: 2450–2455

    PubMed  CAS  Google Scholar 

  8. Kerr JFR, Winterford CM, Harmon BV (1994) Apoptosis: Its significance in cancer and cancer therapy. Cancer 73: 2013–2026

    Article  PubMed  CAS  Google Scholar 

  9. Cohen JJ (1993) Apoptosis. Immunol Today 14: 126–130

    Article  PubMed  CAS  Google Scholar 

  10. Savill JS, Wyllie AH, Henson JE, Walport MJ, Henson PM, Haslett C (1989) Macrophage phagocytosis of aging neutrophils in inflammation Programmed cell death in the neutrophil leads to its recognition by macrophages J Clin Invest 83: 865–875

    Article  PubMed  CAS  Google Scholar 

  11. Lockshin RA, Williams CM (1964) Programmed cell death II Endocrine potentiation of the breakdown of the intersegmental muscles of silkworms. J Insect Physiol 10,643–649

    Article  CAS  Google Scholar 

  12. Yuan J, Horvitz HR (1990) The Caenorhabditis elegans genes ced-3 and ced-4 act cell autonomously to cause programmed cell death. Dev Biol 138, 33–41

    Article  PubMed  CAS  Google Scholar 

  13. Boudreau N, Sympson CJ, Werb Z, Bissell MJ (1995) Suppression of ICE and apoptosis in mammary epithelial cells by extracellular matrix. Science 267: 891–893

    Article  PubMed  CAS  Google Scholar 

  14. Watson RWG, Rotstein OD, Nathens AB, Parodo J, Marshall J (1997) Neutrophil apoptosis is modulated by endothelial transmigration and adhesion molecule engagement. J Immunol 158: 945–953

    PubMed  CAS  Google Scholar 

  15. Nagata S, Golstein P (1995) The Fas death factor. Science 267: 1449–1456

    Article  PubMed  CAS  Google Scholar 

  16. Suda T, Nagata S (1994) Purification and characterization of the Fas-ligand that induces apoptosis. J Exp Med 179: 873–879

    Article  PubMed  CAS  Google Scholar 

  17. Nagata S (1994) Fas and Fas ligand: a death factor and its receptor. Adv Immunol 57: 129–144

    Article  PubMed  CAS  Google Scholar 

  18. Vignaux F, Vivier E, Malissen B, Depraetere V, Nagata S, Golstein P (1995) TCR/CD3 coupling to Fas-based cytotoxicity. J Exp Med 181: 781–786

    Article  PubMed  CAS  Google Scholar 

  19. Alderson MR, Tough TW, Davis-Smith T, Braddy S, Falk B, Schooley KA, Goodwin RG, Smith CA, Ramadell F, Lynch DH (1995) Fas ligand mediated activation-induced cell death in human T Lymphocytes. J Exp Med 181: 71–77

    Article  PubMed  CAS  Google Scholar 

  20. Dhein J, Walczak H, Baumler C, Debatin K, Krammer PH (1995) Autocrine T-cell suicide mediated by APO-1(Fas/CD95). Nature 373: 438–441

    Article  PubMed  CAS  Google Scholar 

  21. Nagata S, Takashi S (1995) Fas and Fas ligand: 1pr and gld mutations. Immunol Today 16: 39–43

    Article  PubMed  CAS  Google Scholar 

  22. Griffith TS, Brunner T, Fletcher SM, Green DR, Ferguson FA (1995) Fas ligand-induced apoptosis as a mechanism of immune privilege. Science 270: 1189–92

    Article  PubMed  CAS  Google Scholar 

  23. Bellgrau D, Gold D, Selawry H, Moore J, Franzusoff A, Duke RC (1995) A role for CD95 ligand in preventing graft rejection. Nature 377: 630–632

    Article  PubMed  CAS  Google Scholar 

  24. Griffith TS, Yu X, Herndon JM, Green DR, Ferguson TA (1996) CD95-induced apoptosis of lymphocytes in an immune privileged site induced immunological tolerance. Immunity 5: 7–16

    Article  PubMed  CAS  Google Scholar 

  25. Liles WC, Kiener PA, Ledbetter JA, Aruffo A, Klebenoff SJ (1996) Differential expression of Fas (CD95) and Fas ligand on normal human phagocytes: Implications for the regulation of apoptosis in neutrophils. J Exp Med 184: 429–440

    Article  PubMed  CAS  Google Scholar 

  26. Watson RWG, Rotstein OD, Jimenez M, Parodo J, Marshall JC (1997) Augmented intracellular glutathione inhibits Fas-triggered apoptosis of activated human neutrophils. Blood 89: 4175–4181

    PubMed  CAS  Google Scholar 

  27. Chinnaiyan AM, O’Rourke K, Tewari M, Dixit VM (1995) FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis. Cell 81: 505–512

    Article  PubMed  CAS  Google Scholar 

  28. Hsu H, Xiong J, Goeddel DV (1995) The TNF receptor 1-associated protein TRADD signals cell death and NK-kB activation. Cell 81: 495–504

    Article  PubMed  CAS  Google Scholar 

  29. Boldin MP, Goncharov TM, Goltsev YV, Wallach D (1996) Involvement of MACH, a novel MORT1/FADD-interacting protease, in Fas/APO-1- and TNF receptor-induced cell death. Cell 85: 803–815

    Article  PubMed  CAS  Google Scholar 

  30. Muzio M, Chinnaiyan AM, Kischkel FC, et al (1996) FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death-inducing signaling complex. Cell 85: 817–828

    Article  PubMed  CAS  Google Scholar 

  31. Alnemri ES, Livingston DJ, Nicholson DW, Salvesen G, Thornberry NA, Wong WW, and Yuan J (1996) Human ICE/CED-3 protease nomenclature. Cell 87: 171–176

    Article  PubMed  CAS  Google Scholar 

  32. Yuan J Shaham S, Ledoux S, Ellis HM, Horvitz HR (1993) The Celegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1β -converting enzyme. Cell 75: 641–652

    Article  PubMed  CAS  Google Scholar 

  33. Schlegel J, Peters I, Orrenius S, Miller DK, Thornberry NA, Yamin T-T, Nicholson DW (1996) CPP32/Apopain is a key interleukin-1 converting enzyme-like protease involved in Fas-mediated apoptosis. J Biol Chem 271: 1841–1844

    Article  PubMed  CAS  Google Scholar 

  34. Dbaibo GS, Perry DK, Gamard CJ, Platt R, Poirier GG, Obeid LM, Hannun YA (1997) Cytokine response modifier A (CrmA) inhibits ceramide formation in response to tumor necrosis factor (TNF)-α: CrmA and Bcl-2 target distinct components in the apoptotic pathway. J Exp Med 185: 481–490

    Article  PubMed  CAS  Google Scholar 

  35. Armstrong RC, Aja T, Xiang J, Gaur S, Krebs JF, Hoang K, Bai X, Korsmeyer SJ, Karanewsky DS, Fritz LC, Tomaselli KJ (1996) Fas-induced activation of the cell death-related protease CPP32 is inhibited by Bcl-2 and by ICE family protease inhibitors. J Biol Chem 271: 16850–16855

    Article  PubMed  CAS  Google Scholar 

  36. Hengartner MO, Horvitz HR (1994) Celegans cell survival gene ced-9 encodes a functional homolog of the mammalian proto-oncogene bc1–2. Cell 76: 665–676

    Article  PubMed  CAS  Google Scholar 

  37. Vaux DL (1993) Towards an understanding of the molecular mechanisms of physiological cell death. Proc Am Nat Acad Sci 90: 786–789

    Article  CAS  Google Scholar 

  38. White E (1996) Life, death, and the pursuit of apoptosis. Genes Dev 10: 1–15

    Article  PubMed  CAS  Google Scholar 

  39. Strasser A, Harris AW, Bath ML, Cory S (1991) Novel primitive lymphoid tumours induced in transgenic mice by cooperation between myc and bcl-2. Nature 348: 331–333

    Article  Google Scholar 

  40. Buttke TM, Sandstrom PA (1994) Oxidative stress as a mediator of apoptosis. Immunol Today 15: 7–10

    Article  PubMed  CAS  Google Scholar 

  41. Lennon SV, Martin SJ, Cotter TG (1991) Dose-dependent induction of apoptosis in human tumour cell lines by widely diverging stimuli. Cell Prolif 24: 203–214

    Article  PubMed  CAS  Google Scholar 

  42. Chang DJ, Ringold GM, Heller RA (1992) Cell killing and induction of manganous superoxide dismutase by tumor necrosis factor-alpha is mediated by lipoxygenase metabolites of arachidonic acid. Biochem Biophys Res Commun 188: 538–546

    Article  PubMed  CAS  Google Scholar 

  43. Hockenbery DM, Oltvai ZN, Yin XM et al (1993) Bc1–2 functions in an antioxidant pathway to prevent apoptosis. Cell 75: 241–251

    Article  PubMed  CAS  Google Scholar 

  44. Kane DJ, Sarafian TA, Anton R, Hahn H, Graalla EB, Valentine JS, Ord T, Bredesen DE (1993) Bd-2 inhibition of neural death: decreased generation of reactive oxygen species. Science 262: 1274–1277

    Article  PubMed  CAS  Google Scholar 

  45. Barres BA, Hart IK, Coles HS, Burne JF, Voyvedic JT, Richartson WD, Raff MC (1992) Cell death and control of cell survival in the oligodendrocyte lineage. Cell 70: 31–46

    Article  PubMed  CAS  Google Scholar 

  46. Robinson J, Watson F, Bucknall RC, Edwards SW (1992) Activation of neutrophil reactive oxidant production by synovial fluid from patients with inflammatory joint disease: soluble and insoluble immunoglobulin aggregates activate different pathways in primed and unprimed. Cells Biochem J 286: 345–351

    CAS  Google Scholar 

  47. McCord JM (1987) Oxygen-derived radicals: a link between reperfusion injury and inflammation. Fed Proc 46: 2401–2406

    Google Scholar 

  48. Repine JE (1992) Scientific perspectives on adult respiratory distress syndrome. Lancet 339: 466–469

    Article  PubMed  CAS  Google Scholar 

  49. Homburg CHE, Haas M, von dem Borne AEG, Verhoeven AJ, Reutelingsperger CPM, Roos D (1995) Human neutrophils lose surface FcyRIII and acquire annexin V binding sites during apoptosis in vitro. Blood 85: 532–540

    PubMed  CAS  Google Scholar 

  50. Lee A, Whyte MKB, Haslett C (1993) Inhibition of apoptosis and prolongation of neutrophil functional longevity by inflammatory mediators. J Leukoc Biol 54: 283–288

    PubMed  CAS  Google Scholar 

  51. Malech HL, Gallin JI (1987) Neutrophils in human diseases. N Engl J Med 317: 687–694

    Article  PubMed  CAS  Google Scholar 

  52. Cox G, Gauldie J, Jordana M (1992) Bronchial epithelial cell-derived cytokines (G-CSF and GM-CSF) promote the survival of peripheral blood neutrophils in vitro. Am J Respir Cell Mol Biol 7: 507–513

    PubMed  CAS  Google Scholar 

  53. Colotta F, Re F, Polentarutti N, Sozzani S, Mantovani A (1992) Modulation of granulocyte survival and programmed cell death by cytokines and bacterial products. Blood 80: 2012–2020

    PubMed  CAS  Google Scholar 

  54. Biffl WL, Moore EE, Moore FA, Barnett CC (1995) Interleukin-6 suppression of neutrophil apoptosis is neutrophil concentration dependent. J Leukoc Biol 58: 582–584

    PubMed  CAS  Google Scholar 

  55. Penick F, Liu JH, Diaz JI, Blanchard DK, Wei S, Forni G, Djeu JY (1994) Interleukin-2 prevention of apoptosis in human neutrophils. Eur J Immunol 24: 440–444

    Article  Google Scholar 

  56. Tsuchida H, Takeda Y, Takei H, Shinzawa H, Takahashi T, Sendo F (1995) in vivo regulation of rat neutrophil apoptosis occurring spontaneously or induced with TNF-a or cycloheximide. J Immunol 154: 2403–2412

    PubMed  CAS  Google Scholar 

  57. Liles C, Dale DC, Klebanoff SJ (1995) Glucocorticoids inhibits apoptosis of human neutrophils. Blood 86: 3181–3188

    PubMed  CAS  Google Scholar 

  58. Afford SC, Pongracz J, Stockley RA, Crocker J, Burnett D (1992) The induction by human interleukin-6 of apoptosis in the promonocytic cell line U937 and human neutrophils. J Biol Chem 267: 21612–21616

    PubMed  CAS  Google Scholar 

  59. Cox G (1996) Interleukin-10 enhances resolution of pulmonary inflammation in vivo, by promoting apoptosis of neutrophils. Am J Physiol 271: L566–L571

    PubMed  CAS  Google Scholar 

  60. Takeda Y, Watanade H, Yonehara S, Yamashita T, Saito S, Sendo Fujiro (1993) Rapid acceleration of neutrophil apoptosis by tumor necrosis factor. Internat Immunol 5: 691–694

    Article  CAS  Google Scholar 

  61. Watson RWG, Redmond HP, Wang JH, Bouchier-Hayes D (1996) Bacterial ingestion, tumor necrosis factor-alpha, and heat induced programmed cell death in activated neutrophils. Shock 5: 47–51

    Article  PubMed  CAS  Google Scholar 

  62. Liles WC, Klebanoff SJ (1995) Regulation of apoptosis in neutrophils-Fas track to death? J Immunol 155: 3289–3291

    PubMed  CAS  Google Scholar 

  63. Watson RWG, Redmond HP, Wang JH, Condron C, Bouchier-Hayes D (1996) Neutrophils undergo apoptosis following ingestion of Escherichia coli. J Immunol 156: 3986–3992

    PubMed  CAS  Google Scholar 

  64. Watson RWG, Rotstein OD, Nathens AB, Dackiw APB, Marshall JC (1996) Thiol-mediated redox regulation of neutrophil apoptosis. Surgery 120: 150–158

    Article  PubMed  CAS  Google Scholar 

  65. Watson RWG, Rotstein OD, Parodo J, Jimenez M, Soric I, Bitar R, Marshall JC (1997) Impaired apoptotic death signaling in inflammatory lung neutrophils is associated with decreased expression of interleukin 1)3 converting enzyme family proteases (Caspases). Surgery 122: 163–172

    Article  PubMed  CAS  Google Scholar 

  66. Bone RC, Balk RA, Cerra FB, Dellinger RP, Fein AM, Knaus WA, Schein RMH, Sibbald WJ (1992) Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Chest 101:1644–1655

    Article  PubMed  CAS  Google Scholar 

  67. Chitnis DC, Dickerson C, Munster AM, Winchurch RA (1996) Inhibition of apoptosis in polymorphonuclear neutrophils from burn patients. J Leuk Biol 59:835–839

    CAS  Google Scholar 

  68. Matuschak GM (ed) (1993) Multiple systems organ failure: hepatic regulation of systemic host defense. Marcel Dekker, New York

    Google Scholar 

  69. Galle PR, Hofmann WJ, Walczak H (1995) Involvement of the CD95 (APO-1/Fas) receptor and ligand in liver damage. J Exp Med 11: 1223–1230

    Article  Google Scholar 

  70. Leist M Gantner F, Bohlinger I, et al (1995) Tumor necrosis factor-induced hepatocyte apoptosis precedes liver failure in experimental murine shock models. Am J Pathol 146: 1220–1234

    Google Scholar 

  71. Galle PR, Hofmann WJ, Walczak H, et al (1995) Involvement of the CD95 (APO-1/Fas) receptor and ligand in liver damage. J Exp Med 182: 1223–1230

    Article  PubMed  CAS  Google Scholar 

  72. Cox G, Cossley J, Xing Z (1995) Macrophage engulfment of apoptotic neutrophils contributes to the resolution of acute pulmonary inflammation in vivo. Am J Respir Cell Mol Biol 12: 232–237

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Basel AG

About this chapter

Cite this chapter

William, R., Watson, G. (1999). Apoptosis: Its role in the systemic inflammatory response syndrome and the involvement of cytokines. In: Redl, H., Schlag, G. (eds) Cytokines in Severe Sepsis and Septic Shock. Progress in Inflammation Research. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8755-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8755-7_12

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9759-4

  • Online ISBN: 978-3-0348-8755-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics