Skip to main content

Regulation of meningeal blood flow by neuropeptides: Relevance to migraine

  • Chapter
Pain and Neurogenic Inflammation

Part of the book series: Progress in Inflammation Research ((PIR))

Abstract

Although the pathogenesis of migraine headache is still a matter of speculation rather than of understanding, clinical and experimental evidence has long focused attention on pathological processes involving the perivascular innervation of mainly intracranial blood vessels (i.e. pial and durai vessels) as the likely source of the pain in this disease [1– 3]. The discovery of neuropeptides in perivascular nerve fibres during recent years has had a major influence here, and greatest interest has been directed to the possible actions of two vasoactive peptides found in trigeminal sensory neurons, calcitonin gene-related peptide (CGRP) and substance P (SP). Though meningeal as well as extracranial vessels are innervated by trigeminal nerve fibres containing these neuropeptides [4, 5] and extracranial vascular mechanisms may partly be involved [6], experimental and clinical work, initiated by the pioneering studies of Ray and Wolff [7] and Penfield and McNaughton in 1940 [8], implicated a dominant role of intracranial blood vessels, i.e. arteries of the dura mater encephali, the sagittal sinus, and to some extent basal intracerebral arteries, in the generation of headaches [3, 9]. Therefore the dura mater has become the preferential target for studying mechanisms of meningeal nociception and vascular headache [9– 12]. The neurogenic inflammation of the meninges in particular (an experimental inflammation characterized by oedema, hyperaemia, activation of platelets, endothelium and mast cells following antidromic stimulation of trigeminal afferents [13,14]), has attracted the attention of several investigators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Moskowitz MA (1984) The neurobiology of vascular head pain. Ann Neurol 16: 157–168

    Article  PubMed  CAS  Google Scholar 

  2. Goadsby PJ, Edvinsson L (1993) The trigeminovascular system and migraine: studies characterizing cerebrovascular and neuropeptide changes seen in humans and cats. Ann Neurol 33: 48–56

    Article  PubMed  CAS  Google Scholar 

  3. Olesen J (1994) Pathophysiology of human vascular headache. In: GF Gebhart, DL Hammond, TS Jensen (eds): Proceedings of the 7th World Congress on Pain; Progress in pain research and management Vol. 2. IASP Press, Seattle, 733–753

    Google Scholar 

  4. Edvinsson L, Jansen I, Uddman R, Gulbenkian S (1994) Innervation of the human cere-bral circulation. J Auton Nery Syst 49: S91–S96

    Article  Google Scholar 

  5. Jansen I, Uddman R, Edvinsson L (1993) Neuropeptides in human cranial arteries: occurrence and vasomotor responses. In: J Olesen, RF Schmidt (eds): Pathophysiological mechanisms of migraine. VCH, Weinheim/New York, 45–63

    Google Scholar 

  6. Drummond PD, Lance JW (1983) Extracranial vascular changes and the source of pain in migraine headache. Ann Neurol 13: 32–37

    Article  PubMed  CAS  Google Scholar 

  7. Ray BS, Wolff HG (1940) Experimental studies on headache: pain sensitive structures of the head and their significance in headache. Arch Surg 1: 813–856

    Article  Google Scholar 

  8. Penfield W, McNaughton FL (1940) Dural headache and innervation of the dura mater. Arch Neurol Psychiat 44: 43–75

    Article  Google Scholar 

  9. Moskowitz MA, Buzzi MG, Sakas DE, Linnik MD (1989) Pain mechanisms underlying vascular headaches. Rev Neurol (Paris) 145: 181–193

    CAS  Google Scholar 

  10. Davis KD, Dostrovsky JO (1988) Responses of feline trigeminal spinal tract nucleus neurons to stimulation of the middle meningeal artery and sagittal sinus. J Neurophysiol 59: 648–665

    PubMed  CAS  Google Scholar 

  11. Strassman AM, Mason P, Moskowitz MA, Maciewicz RJ (1986) Response of brainstem trigeminal neurons to electrical stimulation of the dura. Brain Res 379: 242–250

    Article  PubMed  CAS  Google Scholar 

  12. Strassman AM, Raymond SA, Burstein R (1996) Sensitization of meningeal sensory neurons and origin of headaches. Nature 384: 560–564

    Article  PubMed  CAS  Google Scholar 

  13. Dimitriadou V, Buzzi MG, Moskowitz MA, Theoharides TC (1991) Trigeminal sensory fiber stimulation induces morphological changes reflecting secretion in rat dura mater mast cells. Neuroscience 44: 97–112

    Article  PubMed  CAS  Google Scholar 

  14. Dimitriadou V, Buzzi MG, Theoharides TC, Moskowitz MA (1992) Ultrastructural evidence for neurogenically mediated changes in blood vessels of the rat dura mater and tongue following antidromic trigeminal stimulation. Neuroscience 48: 187–203

    Article  PubMed  CAS  Google Scholar 

  15. Moskowitz MA, Cutrer FM (1994) Possible importance of neurogenic inflammation within the meninges to migraine headache. In: HL Fields, JC Liebeskind (eds): Progress in pain research and management Vol. 1. IASP Press, Seattle, 43–49

    Google Scholar 

  16. Brain SD, Williams TJ, Tippins JR, Morris HR, Maclntyre I (1985) Calcitonin gene-related peptide is a potent vasodilator. Nature 313: 54–56

    Article  PubMed  CAS  Google Scholar 

  17. Goadsby PJ, L. Edvinsson L, Ekman R (1988) Release of vasoactive peptides in the extracerebral circulation of humans and the cat during activation of the trigeminovascular system. Ann Neurol 23: 193–196

    Article  PubMed  CAS  Google Scholar 

  18. Lambert GA, Bogduk N, Goadsby PJ, Duckworth JW, Lance JW (1984) Decreased carotid arterial resistance in cats in response to trigeminal stimulation. J Neurosurg 61: 307–315

    Article  PubMed  CAS  Google Scholar 

  19. Michalicek J, Gordon V, Lambert G (1996) Autoregulation in the middle meningeal artery. J Cereb Blood Flow Metab 16: 507–516

    Article  PubMed  CAS  Google Scholar 

  20. Kurosawa M, Messlinger K, Pawlak M, Schmidt RF (1995) Increase of meningeal blood flow after electrical stimulation of rat dura mater encephali: mediation by calcitonin gene-related peptide. Br J Pharmacol 114: 1397–1402

    Article  PubMed  CAS  Google Scholar 

  21. Messlinger K, Hanesch U, Kurosawa M, Pawlak M, Schmidt RF (1995) Calcitonin gene-related peptide released from durai nerve fibres mediates increase of meningeal blood flow in the rat. Can J Physiol Pharmacol 73: 1020–1024

    Article  PubMed  CAS  Google Scholar 

  22. Williamson DJ, Hargreaves RJ, Hill RG, Shepheard SL (1997) Intravital microscope studies on the effects of neurokinin agonists and calcitonin gene-related peptide on durai vessels diameter in the anaesthetized rat. Cephalalgia 17: 518–524

    Article  PubMed  CAS  Google Scholar 

  23. Suzuki N, Hardebo JE, Kåhrström J, Owman C (1990) Effect on cortical blood flow of electrical stimulation of trigeminal cerebrovascular nerve fibres in the rat. Acta Physiol Scand 138: 307–315

    Article  PubMed  CAS  Google Scholar 

  24. Friberg L (1991) Cerebral blood flow changes in migraine: methods, observations and hypotheses. J Neurol 238: S12–S17

    Article  PubMed  Google Scholar 

  25. Olesen J, Iversen HK (1993) Cerebral circulatory studies: the gateway to migraine pathophysiology. In: J Olesen, RF Schmidt (eds): Pathophysiological mechanisms of migraine. VCH, Weinheim/New York, 45–63

    Google Scholar 

  26. Thomsen LL (1995) Arterial mechanisms in the pathophysiology of migraine headache — implications for modern therapy. Eur J Neurol 2: 403–415

    Article  Google Scholar 

  27. Edvinsson L, Uddman R (1981) Adrenergic, cholinergic and peptidergic nerve fibres in dura mater — involvement in headache? Cephalalgia 1: 175–179

    Article  PubMed  CAS  Google Scholar 

  28. Steiger HJ, Tew JM, Keller JT (1982) The sensory representation of the dura mater in the trigeminal ganglion of the cat. Neurosci Lett 31: 231–236

    Article  PubMed  CAS  Google Scholar 

  29. Keller JT, Marfurt CF, Dimlich RVW, Tierney BE (1989) Sympathetic innervation of the supratentorial dura mater of the rat. J Comp Neurol 290: 310–321

    Article  PubMed  CAS  Google Scholar 

  30. Uddman R, Hara H, Edvinsson L (1989) Neuronal pathways to the rat middle meningeal artery revealed by retrograde tracing and immunocytochemistry. J Auton Nery Syst 26: 69–75

    Article  CAS  Google Scholar 

  31. Amenta F, Sancesario G, Ferrante F, Cavallotti C (1980) Acetylcholinesterase-containing nerve fibres in the dura mater of guinea pig, mouse, and rat. J Neural Transmiss 47: 237–242

    Article  CAS  Google Scholar 

  32. Arbab MAR, Wiklund L, Svendgaard NA (1986) Origin and distribution of cerebral vascular innervation from superior cervical, trigeminal and spinal ganglia investigated with retrograde and anterograde WGA-HRP tracing in the rat. Neuroscience 19: 695–708

    Article  PubMed  CAS  Google Scholar 

  33. Hardebo JE, Arbab M, Suzuki N, Svendgaard NA (1991) Pathways of parasympathetic and sensory cerebrovascular nerves in monkeys. Stroke 22: 331–342

    Article  PubMed  CAS  Google Scholar 

  34. Suzuki N, Hardebo JE, Owman C (1989) Origins and pathways of cerebrovascular nerves storing substance P and calcitonin gene-related peptide in rat. Neuroscience 31: 427–438

    Article  PubMed  CAS  Google Scholar 

  35. Suzuki N, Hardebo JE (1991) Anatomical basis for a parasympathetic and sensory innervation of the intracranial segment of the internal carotid artery in man. J Neurol Sci 104: 19–31

    Article  PubMed  CAS  Google Scholar 

  36. Suzuki N, Hardebo JE, Kährström J, Owman C (1990) Selective electrical stimulation of postganglionic cerebrovascular parasympathetic nerve fibres originating from the sphenopalatine ganglion enhances cortical blood flow in the rat. J Cereb Blood Flow Metab 10: 383–391

    Article  PubMed  CAS  Google Scholar 

  37. Edvinsson L, Rosendahl-Helgesen S, Uddman R (1983) Substance P: Localization, concentration and release in cerebral arteries, choroid plexus and dura mater. Cell Tissue Res 234: 1–7

    Article  PubMed  CAS  Google Scholar 

  38. Von During M, Bauersachs M, Böhmer B, Veh RW, Andres KH (1990) Neuropeptide Y-and substance P-like immunoreactive nerve fibres in the rat dura mater encephali. Anat Embryo! 182: 363–373

    Article  Google Scholar 

  39. Keller JT, Marfurt CF (1991) Peptidergic and serotoninergic innervation of the rat dura mater. J Comp Neurol 309: 515–534

    Article  PubMed  CAS  Google Scholar 

  40. Messlinger K, Hanesch U, Baumgärtel M, Trost B, Schmidt RF (1993) Innervation of the dura mater encephali of cat and rat: ultrastructure and calcitonin gene-related peptide-like and substance P-like immunoreactivity. Anat Embryo! 188: 219–237

    CAS  Google Scholar 

  41. Uddman R, Edvinsson L, Ekman R, Kingman T, McCulloch J (1985) Innervation of feline cerebral vasculature by nerve fibres containing calcitonin gene-related peptide: trigeminal origin and co-existence with substance P. Neurosci Lett 62: 131–136

    Article  PubMed  CAS  Google Scholar 

  42. Edvinsson L, Brodin E, Jansen I, Uddman R (1988) Neurokinin A in cerebral vessels: characterization, localization and effects in vitro. Regul Peptides 20: 181–197

    Article  CAS  Google Scholar 

  43. Liu-Chen L-Y, Liszczak TM, King JC, Moskowitz MA (1986) Immunoelectron microscopic study of substance P-containing fibres in feline cerebral arteries. Brain Res 369: 12–20

    Article  PubMed  CAS  Google Scholar 

  44. Matsuyama T, Shiosaka S, Wanaka A, Yoneda S, Kimura K, Hayakawa T, Emson PC, Tohyama M (1985) Fine structure of peptidergic and catecholaminergic nerve fibres in the anterior cerebral artery and their interrelationship: an immunoelectron microscopic study. J Comp Neurol 235: 268–276

    CAS  Google Scholar 

  45. Tsai S-H, Tew JM, McLean JH, Shipley MT (1988) Cerebral arterial innervation by nerve fibres containing calcitonin gene-related peptide (CGRP): I. Distribution and origin of CGRP perivascular innervation in the rat. J Comp Neurol 271: 435–444

    Article  PubMed  CAS  Google Scholar 

  46. Liu-Chen L-Y, Mayberg MR, Moskowitz MA (1983) Immunohistochemical evidence for a substance P-containing trigeminovascular pathway to pial arteries in cats. Brain Res 268: 162–166

    Article  PubMed  CAS  Google Scholar 

  47. Edvinsson L, Ekman R, Jansen I, McCulloch J, Uddman R (1987) Calcitonin gene-related peptide and cerebral blood vessels: distribution and vasomotor effects. J Cereb Blood Flow Metab 7: 720–728

    Article  CAS  Google Scholar 

  48. Lee Y, Kawai Y, Shiosaka S, Takami K, Kiyama H, Hillyard CJ, Girgis S, Maclntyre J, Emson PC, Tohyama M (1985) Co-existence of calcitonin gene-related peptide and substance P-like peptide in single cells of the trigeminal ganglion of the rat: immunohistochemical analysis. Brain Res 330: 194–196

    Article  PubMed  CAS  Google Scholar 

  49. Prins M, van der Werf F, Baljet B, Otto JA (1993) Cacitonin gene-related peptide and substance P immunoreactivity in the monkey trigeminal ganglion, an electron microscopic study. Brain Res 629: 315–318

    Article  PubMed  CAS  Google Scholar 

  50. O’Connor T, Van der Kooy D (1988) Enrichment of a vasoactive neuropeptide (calcitonin gene-related peptide) in the trigeminal sensory projection to the intracranial arteries. J Neurosci 8: 2468–2476

    Google Scholar 

  51. McCulloch J, Uddman R, Kingman TA, Edvinsson L (1986) Calcitonin gene-related peptide: functional role in cerebrovascular regulation. Proc Natl Acad Sci USA 83: 5731–5735

    Article  PubMed  CAS  Google Scholar 

  52. Wiesenfeld-Hallin Z, Hökfelt T, Lundley JM, Forssman WG, Reinecke M, Tschopp FA, Fischer JA (1984) Immunoreactive calcitonin gene-related peptide and substance P coexist in sensory neurons to the spinal cord and interact in spinal behavioral responses of the rat. Neurosci Lett 52: 199–204

    Article  PubMed  CAS  Google Scholar 

  53. Mione MC, Cavanagh JFR, Kirkpatrick KA, Burnstock G (1992) Plasticity in expression of calcitonin gene-related peptide and substance P immunoreactivity in ganglia and fibres following guanethidine and/or capsaicin denervation. Cell Tissue Res 268: 491–504

    Article  PubMed  CAS  Google Scholar 

  54. Keller JT, Mullen BG, Zuccarello M (1993) Dural neuropeptide changes after subarachnoid hemorrhage in rats. Brain Res Bull 31: 713–718

    Article  PubMed  CAS  Google Scholar 

  55. Moskowitz MA (1993) Neurogenic inflammation in the pathophysiology and treatment of migraine. Neurology 43: S16–S20

    PubMed  CAS  Google Scholar 

  56. Buzzi MG, Carter WB, Shimizu T, Heath HG, Moskowitz MA (1991) Dihydroergotamine and sumatriptan attenuate levels of CGRP in plasma in rat superior sagittal sinus during electrical stimulation of the trigeminal ganglion. Neuropharmacol 30: 1193–1200

    Article  CAS  Google Scholar 

  57. Zagami AS, Goadsby PJ, Edvinsson L (1989) Extracranial peptide release following stimulation of the superior sagittal sinus in the cat. Cephalalgia 9 (Suppl 10): 294–295

    Google Scholar 

  58. Geppetti P, del Bianco E, Santicioli P, Lippe I, Maggi CA, Sicuteri F (1990) Release of sensory neuropeptides from durai venous sinuses of guinea pig. Brain Res 510: 58–62

    Article  PubMed  CAS  Google Scholar 

  59. Ebersberger A, Averbeck B, Messlinger K, Reeh PW (1999) Release of substance P, calcitonin-related peptide and prostaglandin E2 from rat dura mater encephali following electrical and chemical stimulation, in vitro. Neuroscience 89: 901–907

    Article  CAS  Google Scholar 

  60. Moskowitz MA, Brody M, Liu-Chen L-Y (1983) In vitro release of immunoreactive substance P from putative afferent nerve endings in bovine pia arachnoid. Neuroscience 9: 809–814

    Article  PubMed  CAS  Google Scholar 

  61. Knyihår-Csillik E, Tajti J, Samsam M, Såry G, Vécsei L (1995) Electrical stimulation of the Gasserian ganglion induces structural alterations of calcitonin gene-related peptideimmunoreactive perivascular sensory nerve terminals in the rat cerebral dura mater: a possible model of migraine headache. Neurosci Lett 184: 189–192

    Article  PubMed  Google Scholar 

  62. Shores A (1985) Neuroanesthesia. A review of the effects of anesthetic agents on cerebral blood flow and intracranial pressure in the dog. Vet Surgery 14: 257–263

    Article  Google Scholar 

  63. Schepelmann K, Ebersberger A, Pawlak M, Oppmann M, Messlinger K (1997) Activation of trigeminal brain stem neurons by chemical stimulation of the dura mater encephali — preparation for studying meningeal nociception in the rat. Schmerz 11: 322–327

    Article  PubMed  CAS  Google Scholar 

  64. Williamson DJ, Hargreaves RJ, Hill RG, Shepheard SL (1997) Sumatriptan inhibits neurogenic vasodilation of dural blood vessels in the anaesthetized rat — intravital microscope studies. Cephalalgia 17: 525–531

    Article  PubMed  CAS  Google Scholar 

  65. Ngai AC, Meno JR, Winn HR (1995) Simultaneous mesurements of pial arteriole diameter and laser-Doppler flow during somatosensory stimulation. J Cereb Blood Flow Metab 15: 124–127

    Article  PubMed  CAS  Google Scholar 

  66. Edwards RM, Stack EJ, Trizna W (1991) Calcitonin gene-related peptide stimulates adenylate cyclase and relaxes intracerebral arterioles. J Pharmacol Exp Therap 257: 1020–1024

    CAS  Google Scholar 

  67. Jansen I, Alafaci C, McCulloch J, Uddman R, Edvinsson L (1991) Tachykinins (substance P, neurokinin A, neuropeptide K, and neurokinin B) in the cerebral circulation: vasomotor responses in vitro and in situ. J Cereb Blood Flow Metab 11: 567–575

    Article  CAS  Google Scholar 

  68. Beattie DT, Stubbs CM, Connor HE, Feniuk W (1993) Neurokinin-induced changes inpial artery diameter in the anaesthetized guinea-pig. Br J Pharmacol 108: 146–149

    Article  PubMed  CAS  Google Scholar 

  69. Carmody J, Pawlak M, Messlinger K (1996) Lack of a role for substance P in the control of dural arterial flow. Exp Brain Res 111: 424–428

    Article  PubMed  CAS  Google Scholar 

  70. Stubbs CM, Waldron GJ, Connor HE, Feniuk W (1992) Characterization of the receptor mediating relaxation to substance P in canine middle cerebral artery: no evidence for involvement of substance P in neurogenically mediated relaxation. Brit J Pharmacol 105: 875–880

    Article  CAS  Google Scholar 

  71. Kerezoudis NP, Olgart L, Edwall L (1994) CGRP8_37 reduces the duration but not the maximal increase of antidromic vasodilation in dental pulp and lip of the rat. Acta Physiol Scand 151: 73–81

    Article  PubMed  CAS  Google Scholar 

  72. Escott KJ, Beattie DT, Connor HE, Brain SD (1995) Trigeminal ganglion stimulation increases facial skin blood flow in the rat: a major role for calcitonin gene-related peptide. Brain Res 669: 93–99

    Article  PubMed  CAS  Google Scholar 

  73. Shepheard SL, Williamson DJ, Hill RG, Hargreaves RJ (1993) The non-peptide neurokininl receptor antagonist, RP 67580, blocks neurogenic plasma extravasation in the dura mater of rats. Brit J Pharmacol 108: 11–12

    Article  CAS  Google Scholar 

  74. Ottoson A, Edvinsson L (1997) Release of histamine from durai mast cells by substance P and calcitonin gene-related peptide. Cephalalgia 17: 166–174

    Article  Google Scholar 

  75. Markowitz S, Saito K, Moskowitz MA (1987) Neurogenically mediated leakage of plasma protein occurs from blood vessels in dura mater but not brain. J Neurosci 7: 4129–4136

    PubMed  CAS  Google Scholar 

  76. Saito K, Markowitz S, Moskowitz MA (1988) Ergot alkaloids block neurogenic extravasation in dura mater: proposed action in vascular headaches. Ann Neurol 24: 732–737

    Article  PubMed  CAS  Google Scholar 

  77. Jansen I, Uddman R, Ekman R, Olesen J, Ottosson A, Edvinsson L (1992) Distribution and effects of neuropeptide Y, vasoactive intestinal peptide, substance P, and calcitonin gene-related peptide in human middle meningeal arteries: comparison with cerebral and temporal arteries. Peptides 13: 527–536

    Article  PubMed  CAS  Google Scholar 

  78. Goadsby PJ, Edvinsson L, Ekman R (1990) Vasoactive peptide release in the extracerebral circulation of humans during migraine headache. Ann Neurol 28: 183–187

    Article  PubMed  CAS  Google Scholar 

  79. Goadsby PJ, Edvinsson L (1994) Peripheral and central trigeminovascular activation in cat is blocked by the serotonin (5HT)-1D receptor agonist 311C90. Headache 34: 394–399

    Article  PubMed  CAS  Google Scholar 

  80. Edvinsson L, Fredholm BB, Hamel E, Jansen I, Verrecchia C (1985) Perivascular peptides relax cerebral arteries concomitant with stimulation of cyclic adenosine monophosphate accumulation or release of an endothelium-derived relaxing factor in the cat. Neurosci Lett 58: 213–217

    Article  PubMed  CAS  Google Scholar 

  81. Jansen-Olesen I, Mortensen A, Edvinsson L (1996) Calcitonin gene-related peptide is released from capsaicin-sensitive nerve fibres and induces vasodilatation of human cerebral arteries concomitant with activation of adenyl cyclase. Cephalalgia 16: 310–316

    Article  PubMed  CAS  Google Scholar 

  82. Enokibori M, Okamura T, Toda N (1994) Mechanism underlying substance P-induced relaxation in dog isolated superficial temporal arteries. Br J Pharmacol 111: 77–82

    Article  PubMed  CAS  Google Scholar 

  83. Wei EP, Moskowitz MA, Boccalini P, Kontos HA (1992) Calcitonin gene-related peptide mediates nitroglycerin and sodium nitroprusside-induced vasodilation in feline cerebral arterioles. Circ Res 70: 1313–1319

    Article  PubMed  CAS  Google Scholar 

  84. Messlinger K, Pawlak M, Zehnter A, Suzuki A, Schmidt RF (1997) Modulation of dural arterial blood flow in the rat by nitric oxide. Cephalalgia 17: 345

    Google Scholar 

  85. Brain SD Hughes SR, Cambridge H, O’Driscoll G (1993) The contribution of calcitonin gene-related peptide (CGRP) to neurogenic vasodilator responses. Agents Actions 38: C19–C21

    Article  Google Scholar 

  86. Holzer P, Jocic M (1994) Cutaneous vasodilatation induced by nitric oxide-evoked stimulation of afferent nerves in the rat. Br J Pharmacol 112: 1181–1187

    Article  PubMed  CAS  Google Scholar 

  87. Olesen J, Thomsen LL, Iversen HK (1994) Nitric oxide is a key molecule in migraine and other vascular headaches. Trends Pharmacol Sci 15: 149–153

    Article  PubMed  CAS  Google Scholar 

  88. Fanciullacci M, Alessandri M, Figini M, Geppetti P, Michelacci S (1995) Increase in plasma calcitonin gene-related peptide from the extracerebral circulation during nitroglycerin-induced cluster headache attack. Pain 60: 119–123

    Article  PubMed  CAS  Google Scholar 

  89. Iversen HK (1995) Experimental headache in humans. Cephalalgia 15: 281–287

    PubMed  CAS  Google Scholar 

  90. Lambert GA, Goadsby PJ, Zagami AS, Duckworth JW (1988) Comparative effects of stimulation of the trigeminal ganglion and the superior sagittal sinus on cerebral blood flow and evoked potentials in the cat. Brain Res 453: 143–149

    Article  PubMed  CAS  Google Scholar 

  91. Goadsby PJ (1991) Characteristics of facial nerve-elicited cerebral vasodilatation determined using laser Doppler flowmetry. Am J Physiol 260: R250–R262

    Google Scholar 

  92. Goadsby PJ, Macdonald GJ (1985) Extracranial vasodilatation mediated by vasoactive intestinal polypeptide (VIP). Brain Res 329: 285–288

    Article  PubMed  CAS  Google Scholar 

  93. Goadsby PJ, and Edvinsson L (1994) Human in vivo evidence for trigeminovascular activation in cluster headache. Neuropeptide changes and effects of acute attacks therapies. Brain 117: 427–434

    Article  PubMed  Google Scholar 

  94. Parsons AA (1991) 5-HT receptors in human and animal cerebrovasculature. Trends Pharmacol Sci 12: 310–315

    Article  PubMed  CAS  Google Scholar 

  95. Friberg L, Olesen J, Iversen HK, Sperling B (1991) Migraine pain associated with middle cerebral artery dilatation: reversal by sumatriptan. Lancet 338: 13–17

    Article  PubMed  CAS  Google Scholar 

  96. Connor HE, Stubbs CM, Feniuk W, Humphrey PA (1992) Effect of sumatriptan, a selective 5-HT1-like receptor agonist, on pial vessel diameter in anaesthetised cats. J Cereb Blood Flow Metab 12: 514–519

    Article  PubMed  CAS  Google Scholar 

  97. Saxena PR, Tfelt-Hansen P (1993) Sumatriptan. In: J Olesen, P Tfelt-Hansen, KMA Welch (eds): The headaches. Raven Press, New York 329–341

    Google Scholar 

  98. Lambert G, Michalicek J (1996) Effect of antimigraine drugs on durai blood flows and resistances and the responses to trigeminal stimulation. Eur J Pharmacol 311: 141–151

    Article  PubMed  CAS  Google Scholar 

  99. Buzzi MG, Moskowitz MA (1990) The antimigraine drug, sumatriptan (GR 43175) selectively blocks neurogenic plasma extravasation from blood vessels in dura mater. Br J Pharmacol 99: 202–206

    Article  PubMed  CAS  Google Scholar 

  100. Matsubara T, Moskowitz MA, Byun B (1991) CP-93,129, a potent and selective 5-HT1B receptor agonist blocks neurogenic plasma extravasation within rat but not guinea-pig dura mater. Br J Pharmacol 104: 3–4

    Article  PubMed  CAS  Google Scholar 

  101. Buzzi MG, Dimitriadou V, Theoharides TC, Moskowitz MA (1992) 5-Hydroxytryptamine receptor agonists for the abortive treatment of vascular headaches block mast cell, endothelial and platelet activation within the rat dura mater after trigeminal stimulation. Brain Res 583: 137–149

    Article  PubMed  CAS  Google Scholar 

  102. Williamson DJ, Shepheard SL, Hill RG, Hargreaves RJ (1997) The novel anti-migraine agent rizatriptan inhibtits neurogenic durai vasodilation and extravasation. Eur J Pharmacol 328: 61–64

    Article  PubMed  CAS  Google Scholar 

  103. Humphrey PPA, Goadsby PJ (1994) The mode of action of sumatriptan is vascular? A debate. Cephalalgia 14: 401–410

    Article  PubMed  CAS  Google Scholar 

  104. Rebeck GW, Maynard KI, Hyman BT, Moskowitz MA (1994) Selective 5-HT1Da serotonin receptor gene expression in trigeminal ganglia: implications for antimigraine drug development. Proc Natl Acad Sci USA 91: 3666–3669

    Article  PubMed  CAS  Google Scholar 

  105. Bruinvels AT, Landwehrmeyer B, Gustafson EL, Durkin MM, Mengod G, Branchek TA, Hoyer D, Palacios JM (1994) Localization of 5-HT1B 5-HT1D alpha, 5-HTIE and 5HT1F receptor messenger RNA in rodent and primate brain. Neuropharmacology 33: 367–386

    Article  PubMed  CAS  Google Scholar 

  106. Bouchelet I, Cohen Z, Case B, Seguela P, Hamel E (1996) Differential expression of sumatriptan-sensitive 5-hydroxytryptamine receptors in human trigeminal ganglia and cerebral blood vessels. Molec Pharmacol 60: 219–223

    Google Scholar 

  107. Hartig PR, D. Hoyer D, Humphrey, PPA, Martin GR (1996) Alignment of receptor nomenclature with the human genome: classification of 5-HTIB and 5-HT1D receptor subtypes. Trends Pharmacol Sci 17: 103–105

    Article  PubMed  CAS  Google Scholar 

  108. Yu X-J, Cutrer FM, Moskowitz MA, Waeber C (1997) The 5-HT1D receptor antagonist GR-127,935 prevents inhibitory effects of sumatriptan but not CP-122,288 and 5-CT on neurogenic plasma extravasation within guinea pig dura mater. Neuropharmacology 36: 83–91

    Article  PubMed  CAS  Google Scholar 

  109. Shepheard SL, Williamson DJ, Beer MS, Hill RG, Hargreaves RJ (1997) Differential effects of 5-HT1B/1D receptor agonists on neurogenic durai plasma extravasation and vasodilation in anaesthetized rats. Neuropharmacol 36: 525–533

    Article  Google Scholar 

  110. Adham N, Bard JA, Zgombig JM, Durkin MM, Kucharewicz S, Weinshank RL, Branchek TA (1997) Cloning and characterization of guinea pig 5-HT1F receptor subtypes: a comparison of the pharmacological profile to the human species homolog. Neuropharmacology 36: 569–576

    Article  PubMed  CAS  Google Scholar 

  111. Johnson KW, Schaus JM, Durkin MM, Audia JE, Kaldor SW, Flaugh ME, Adham N, Zgombick JM, Cohen ML, Branchek TA, Phebus LA (1997) 5-HT1F receptor agonists inhibit neurogenic dural inflammation in guinea pigs. Neuroreport 8: 2237–2240

    Article  PubMed  CAS  Google Scholar 

  112. Messlinger K, Hotta H, Pawlak M, Schmidt RF (1997) Effects of the 5-HT1 receptor agonists, sumatriptan and CP 93,129, on durai arterial flow in the rat. Eur J Pharmacol 332: 173–181

    Article  PubMed  CAS  Google Scholar 

  113. Huang Z, Byun B, Matsubara T, Moskowitz MA (1993) Time-dependent blockade of neurogenic plasma extravasation in dura mater by 5-HT1B/D agonists and endopeptidase 24.11. Br J Pharmacol 108: 331–335

    Article  PubMed  CAS  Google Scholar 

  114. Shepheard SL, Williamson DJ, Williams J, Hill RG, Hargreaves RJ (1995) Comparison of the effects of sumatriptan and the NK1 antagonist CP-99,994 on plasma extravasation in dura mater and c-fos mRNA expression in trigeminal nucleus caudalis of rats. Neuropharmacology 34: 255–261

    Article  PubMed  CAS  Google Scholar 

  115. Spokes RA, Middlefell VC (1995) Simultaneous measurement of plasma protein extravasation and carotid vascular resistance in the rat. Eur J Pharmacol 281: 75–79

    Article  PubMed  CAS  Google Scholar 

  116. Kobari M, Fukuuchi Y, Tomita M, Tanahashi N, Konno S, Takeda H (1993) Effects of sumatriptan on the cerebral intraparenchymal microcirculation in the cat. Br J Pharmacol 110: 1445–1448

    Article  PubMed  CAS  Google Scholar 

  117. Van Geldern EM, Du XY, Schoemaker RG, Saxena PR (1995) Carotid blood flow distribution, haemodynamics and inotropic responses following calcitonin gene-related peptide in the pig. Eur J Pharmacol 284: 51–60

    Article  Google Scholar 

  118. Ferrari MD (1993) Sumatriptan in the treatment of migraine. Neurology 43: S43–S47

    PubMed  CAS  Google Scholar 

  119. Wilkinson M, Pfaffenrath V, Schoenen J, Diener HC, Steiner TJ (1995) Migraine and cluster headache — their management with sumatriptan — a critical review of the current clinical experience. Cephalalgia 15: 337–357

    PubMed  CAS  Google Scholar 

  120. Lee WS, Moussaoui SM, Moskowitz MA (1994) Blockade by oral or parenteral RPR 100893 (a non-peptide NK1 receptor antagonist) of neurogenic plasma protein extravasation within guinea-pig dura mater and conjunctiva. Br J Pharmacol 112: 920–924

    Article  PubMed  CAS  Google Scholar 

  121. Phebus LA, Johnson KW, Stengel PW, Lobb KL, Nixon JA, Hipskind PA (1997) The non-peptide NK-1 receptor antagonist LY303870 inhibits neurogenic durai inflammation in guinea pigs. Life Sci 60: 1553–1561

    Article  PubMed  CAS  Google Scholar 

  122. Goldstein DJ, Wang O, Saper JR, Stoltz R, Silberstein SD, Mathew NT (1997) Ineffectiveness of neurokinin-1 antagonist in acute migraine: a crossover study. Cephalalgia 17: 785–790

    Article  PubMed  CAS  Google Scholar 

  123. Brändli P, Löffler B-M, Breu V, Osterwalder R, Maire J-P, Clozel M (1995) Role of endothelin in mediating neurogenic plasma extravasation in rat dura mater. Pain 64: 315–322

    Article  Google Scholar 

  124. May A, Gijsman HJ, Wallnöfer A, Jones R, Diener HC, Ferrari MD (1996) Endothelin antagonist blocks neurogenic inflammation, but is not effective in aborting migraine attacks. Pain 67: 375–378

    Article  PubMed  CAS  Google Scholar 

  125. Nozaki K, Moskowitz MA, Boccalini P (1992) CP-93,129, sumatriptan, dihydroergotamine block c-fos expression within rat trigeminal nucleus caudalis caused by chemical stimulation of the meninges. Br J Pharmacol 106: 409–415

    Article  PubMed  CAS  Google Scholar 

  126. Kaube H, Hoskin KL, Goadsby PJ (1993) Inhibition by sumatriptan of central trigeminal neurones only after blood-brain barrier disruption. Br J Pharmacol 109: 788–792

    Article  PubMed  CAS  Google Scholar 

  127. Cumberbatch MJ, Hill RG, Hargreaves RJ (1997) Rizatriptan has central antinociceptive effects against durally evoked responses. Eur J Pharmacol 328: 37–40

    Article  PubMed  CAS  Google Scholar 

  128. Henkes H, May A, Kühne D, Berg-Dammer E, Diener HC (1996) Sumatriptan: vasoactive effect on human durai vessels, demonstrated by subselective angiography. Cephalalgia 16: 224–230

    Article  PubMed  CAS  Google Scholar 

  129. Jansen I, Olesen J, Edvinsson L (1993) 5-Hydroxytryptamine receptor characterization of human cerebral, middle meningeal and temporal arteries: regional differences. Acta Physiol Scand 147: 141–150

    Article  PubMed  CAS  Google Scholar 

  130. Bove GM, Moskowitz MA (1997) Primary afferent neurons innervating guinea pig dura. J Neurophysiol 77: 299–308

    PubMed  CAS  Google Scholar 

  131. Ebersberger A, Ringkamp M, Reeh PW, Handwerker HO (1997) Recordings from brain stem neurons responding to chemical stimulation of the subarachnoid space. J Neurophysiol 77: 3122–3133

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Basel AG

About this chapter

Cite this chapter

Messlinger, K., Pawlak, M. (1999). Regulation of meningeal blood flow by neuropeptides: Relevance to migraine. In: Brain, S.D., Moore, P.K. (eds) Pain and Neurogenic Inflammation. Progress in Inflammation Research. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8753-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8753-3_13

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9758-7

  • Online ISBN: 978-3-0348-8753-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics