Skip to main content

Part of the book series: Progress in Inflammation Research ((PIR))

  • 109 Accesses

Abstract

β2-Adrenoceptor agonists are widely used as bronchodilators and have been used to treat acute attacks of asthma for decades. They can be divided into the very short acting which last 1 to 2 h (e.g. rimiterol), the short-acting such as salbutamol which produce an effect for 4 to 6 h and the newer longer acting β-agonists such as salmeterol and formoterol which maintain bronchodilatation for at least 12 h [1, 2]. β-Agonists antagonise the effects of a wide variety of bronchoconstrictor agents on airway smooth muscle in vitro and in vivo and are thus functional antagonists. The main mechanism by which they cause smooth muscle relaxation involves the cyclic 3′5′ adenosine monophosphate (cAMP) second messenger system which is linked to the β2-adrenoceptor by a coupling G-protein and adenylate cyclase, the effector enzyme [3] (Fig. 1). Cyclic AMP is able to modulate a number of processes which are important in governing the contractile state of the cell [4].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ullman A and Svedmyr N (1988) Salmeterol, a new long acting inhaled β2-adrenoceptor agonist: comparisons with salbutamol in adult asthmatic patients. Thorax 43: 674–678

    Article  PubMed  CAS  Google Scholar 

  2. Ringdal N, Derom E, Pauwels R (1995) Onset and duration of action of single doses of formoterol inhaled via Turbuhaler in mild to moderate asthma. Eur Respir J 8: 68S

    Google Scholar 

  3. Caron M G, Cerione R A, Benovic J L, Strulovici C, Lefkowitz R J, Codina-Salada J, Birnbaumer L (1985) Biochemical characterization of the adrenergic receptors: Affinity labelling, purification and reconstitution studies. Adv Cyclic Nucleotide Protein Phosphorylation Res 19: 1–12

    PubMed  CAS  Google Scholar 

  4. Knox AJ, Tattersfield AE (1995) Airway smooth muscle relaxation. Thorax 50: 894–901

    Article  PubMed  CAS  Google Scholar 

  5. Green SA, Spasoff AP, Coleman RA, Johnson M, Liggett SB (1996) Sustained activation of a G protein coupled receptor via “anchored” agonist binding. Molecular localization of the salmeterol exosite within the β2 adrenergic receptor. J Biol Chem 271: 24029–24035

    Article  PubMed  CAS  Google Scholar 

  6. Nials AT, Ball DI, Butchers PR, Coleman RA, Humbles AA, Johnson M, Vardey CJ (1994) Formoterol on airway smooth muscle and human lung mast cells: a comparison with salbutamol and salmeterol. Eur J Pharmacol 251: 127–135

    Article  PubMed  CAS  Google Scholar 

  7. Persson CGA (1993) The action of β-receptors on microvascular endothelium or: Is airways plasma exudation inhibited by β-agonists? Life Sci 52: 2111–2121

    Article  PubMed  CAS  Google Scholar 

  8. Svensjo E, Persson CGA, Rutili G (1977) Inhibition of bradykinin induced macromolecular leakage from post capillary venules by a β2 adrenoceptor stimulant, terbutaline. Acta Physiol Scand 101: 504–506

    Article  PubMed  CAS  Google Scholar 

  9. Erjefalt I (1986) Anti-asthma drugs attenuate inflammatory leakage of plasma into airway lumen. Acta Physiol Scand 128: 653–654

    Article  PubMed  CAS  Google Scholar 

  10. Advenier C, Qian Y, Law Koune J-D, Molimard M, Candenas M-L, Naline E (1992) Formoterol and salbutamol inhibit bradykinin and histamine induced airway microvascular leakage in guinea-pig. Br J Pharmacol 105: 792–798

    Article  PubMed  CAS  Google Scholar 

  11. Tokuyama K, Lotvall JO, Lofdahl C-G, Barnes PJ, Chung KF (1991) Inhaled formoterol inhibits histamine-induce airflow obstruction and airway microvascular leakage. Eur J Pharmacol 193: 35–39

    Article  PubMed  CAS  Google Scholar 

  12. Erjefalt I, Persson CGA (1991) Long duration and high potency of anti-exudative effects of formoterol in guinea pig tracheobronchial airways. Am Rev Resp Dis 144: 788–791

    Article  PubMed  CAS  Google Scholar 

  13. Whelan CJ and Johnson M (1992) Inhibition by salmeterol of increased vascular permeability and granulocyte accumulation in guinea pig lung and skin. Br J Pharmacol 105: 831–838

    Article  PubMed  CAS  Google Scholar 

  14. Whelan CJ, Johnson M, Vardey CJ (1993) Comparison of the anti-inflammatory properties of formoterol, salbutamol and salmeterol in guinea pig lung and skin. Br J Pharmacol 110: 613–618

    Article  PubMed  CAS  Google Scholar 

  15. Beets JL and Paul W (1980) Actions of locally administered adrenoceptor agonists on increased plasma protein extravasation and blood flow in guinea-pig skin. Br J Pharmacol 70: 461–467

    Article  PubMed  CAS  Google Scholar 

  16. Duffey ME, Hainau B, Ho S, Bentzel CJ (1981) Regulation of epithelial tight junction permeability by cyclic AMP. Nature 294: 451–453

    Article  PubMed  CAS  Google Scholar 

  17. Sulakvelidze I, McDonald DM (1994) Anti-edema action of formoterol in rat trachea does not depend on capsaicin sensitive sensory nerves. Am J Resp Crit Care Med 149: 232–238

    PubMed  CAS  Google Scholar 

  18. Butchers PR, Skidmore IF, Vardey CJ, Wheldon A (1980) Characterisation of the receptor mediating the anti-analphylactic effects of β-adrenoceptor agonists in human lung tissue in vitro. Br J Pharmacol 71: 663–667

    Article  PubMed  CAS  Google Scholar 

  19. Yukawa T, Ukena D, Kroegel C, Chanez P, Dent G, Chung KF, Barnes PJ (1990) Beta-adrenergic receptors on eosinophils. Am Rev Resp Dis 141: 1446–1452

    PubMed  CAS  Google Scholar 

  20. Liggett SB (1989) Identification and characterisation of a homogenous population of β2 adrenergic receptors on human alveolar macrophages. Am Rev Resp Dis 139: 552–555

    Article  PubMed  CAS  Google Scholar 

  21. Williams LT, Snyderman R, Lefkowitz RJ (1976) Identification of β-adrenergic receptors in human lymphocytes by (-)[3H] alprenolol binding. J Allergy Clin Immunol 57: 149–155

    Article  CAS  Google Scholar 

  22. Conolly ME, Greenacre JK (1977) The β-adrenoceptor of the human lymphocyte and human lung parenchyma. Br J Pharmacol 59: 17–23

    Article  PubMed  CAS  Google Scholar 

  23. Bishopric NH, Cohen HJ, Lefkowitz RJ (1980) Beta-adrenergic receptors in lymphocyte sub-populations. J Allergy Clin Immunol 65: 29–33

    Article  PubMed  CAS  Google Scholar 

  24. Galant SP and Allred SJ (1980) Demonstration of beta-2 adrenergic receptors of high coupling efficiency in human neutrophil sonicates. J Lab Clin Med 96: 15–23

    PubMed  CAS  Google Scholar 

  25. Assem ESK, Richter AM (1971) Comparison of in vitro and in vivo inhibition of the anaphylactic mechanism by β-adrenergic stimulants and disodium cromoglycate. Immunology 21: 729–739

    PubMed  CAS  Google Scholar 

  26. Church MK, Young KD (1983) The characteristics of inhibition of histamine release from human lung fragments by sodium cromoglycate, salbutamol and chlorpromazine. Br J Pharmacol 78: 671–679

    Article  PubMed  CAS  Google Scholar 

  27. Church MK, Hiroi J (1987) Inhibition of IgE-dependent histamine release from human dispersed lung mast cells by anti-allergic drugs and salbutamol. Br J Pharmacol 90: 421–429

    Article  PubMed  CAS  Google Scholar 

  28. Rabe KF, Giembycz MA, Dent G, Perkins RS, Evans P, Barnes PJ (1993) Salmeterol is a competitive antagonist at β-adrenoceptors mediating inhibition of respiratory burst in guinea pig eosinophils. Eur J Pharmacol 231: 305–308

    Article  PubMed  CAS  Google Scholar 

  29. Busse WW, Sosman JM (1984) Isoproteronol inhibition of isolated human neutrophil function. J Allergy Clin Immunol 73: 404–410

    Article  PubMed  CAS  Google Scholar 

  30. Mary D, Aussel C, Ferrua B, Fehlmann M (1987) Regulation of interleukin 2 synthesis by cAMP in human T cells. J Immunol 139: 1179–1184

    PubMed  CAS  Google Scholar 

  31. Averill LE, Stein RL, Kammer GM (1988) Control of human T-lymphocyte interleukin-2 production by a cAMP dependent pathway. Cell Immunology 115: 88–99

    Article  CAS  Google Scholar 

  32. Carlson SL, Trauth K, Brooks WH, Roszman TL (1994) Enhancement of beta-adrenergic-induced cAMP accumulation in activated T-cells. J Cell Physiol 161: 39–48

    Article  PubMed  CAS  Google Scholar 

  33. Fuller RW, O’Malley G, Baker AJ, Macdermot J (1988) Human alveolar macrophage activation: Inhibition by forskolin but not β-adrenoceptor stimulation or phosphodiesterase inhibition. Pulm Pharmacol 1: 101–106

    Article  PubMed  CAS  Google Scholar 

  34. Baker AJ, Palmer J, Johnson M, Fuller RW (1994) Inhibitory actions of salmeterol on human airway macrophages and blood monocytes. Eur J Pharmacol 264: 301–306

    Article  PubMed  CAS  Google Scholar 

  35. Butchers PR, Vardey CJ, Johnson M (1991) Salmeterol a potent and long acting inhibitor of inflammatory mediator release from human lung. Br J Clin Pharmacol 104: 672–676

    CAS  Google Scholar 

  36. Lau HY, Wong PL, Lai CK, Ho JK (1994) Effects of long acting β2 adrenoceptor agonists on mast cells of rat, guinea pig and human. Int Arch Allergy Immunol 105: 177–180

    Article  PubMed  CAS  Google Scholar 

  37. Sanjar S, McCabe PJ, Humbles AH (1991) Inhibition by salmeterol of antigen-induced eosinophil accumulation in guinea pig lung. Eur Respir J 4: 200s

    Google Scholar 

  38. Dowling RB, Rayner CFJ, Rutman A, Jackson AD, Kanthakumar K, Dewar A, Taylor GW, Cole PJ, Johnson M, Wilson R (1997) Effect of salmeterol on Pseudomonas aeruginosa infection of respiratory mucosa. Am J Resp Crit Care Med 155: 327–336

    PubMed  CAS  Google Scholar 

  39. Sekut L, Champion BR, Page K, Menius JA, Connolly KM (1995) Anti-inflammatory activity of salmeterol; down regulation of cytokine production. Clin Exp Immunol 99: 461–466

    Article  PubMed  CAS  Google Scholar 

  40. Baker AJ, Fuller RW (1990) Anti-inflammatory effect of salmeterol on human alveolar macrophages. Am Rev Resp Dis 141: A394

    Google Scholar 

  41. Pin I, Gibson PG, Kolendowicz R, Girgis-Garbado A, Denburg JA, Hargreave FE, Dolovich J (1992) Use of induced sputum cell counts to investigate airway inflammation in asthma. Thorax 47: 25–29

    Article  PubMed  CAS  Google Scholar 

  42. Laitinen LA, Laitinen A, Haahtela T (1992) A comparative study of the effects of an inhaled corticosteroid, budesonide, and a β2-agonist, terbutaline, on airway inflammation in newly diagnosed asthma: A randomised, double-blind, parallel-group controlled trial. J Allergy Clin Immunol 90: 32–42

    Article  PubMed  CAS  Google Scholar 

  43. Manolitsas ND, Wang J, Devalia JL, Trigg CJ, McAulay AE, Davies RJ (1995) Regular albuterol, nedocromil sodium and bronchial inflammation in asthma. Am J Resp Crit Care Med 151: 1925–1930

    PubMed  CAS  Google Scholar 

  44. Evans DW, Salome CM, King GG, Rimmer SJ, Seale JP, Woolcock AJ (1997) Effect of regular inhaled salbutamol on airway responsiveness and airway inflammation in rhinitic non-asthmatic subjects. Thorax 52: 136–142

    Article  PubMed  CAS  Google Scholar 

  45. Di Lorenzo G, Morici G, Norrito F, Mansueto P, Melluso M, D’Ambrosio FP, Sangiorgi GB (1995) Comparison of the effects of salmeterol and salbutamol on clinical activity and eosinophil cationic protein serum levels during the pollen season in atopic asthmatics. Clin Exp Allergy 25: 951–956

    Article  PubMed  Google Scholar 

  46. Twentyman OP, Sams VR, Holgate ST (1993) Albuterol and nedocromil sodium affect airway and leukocyte responses to allergen. Am Rev Respir Dis 147: 1425–1430

    PubMed  CAS  Google Scholar 

  47. Howarth PH, Durham SR, Lee TH, Kay AB, Church MK, Holgate ST (1985) Influence of albuterol, cromolyn sodium and ipratropium bromide on the airway and circulating mediator responses to allergen bronchial provocation in asthma. Am Rev Resp Dis 132: 986–992

    PubMed  CAS  Google Scholar 

  48. Dahl R, Pedersen B, Venge P (1991) Bronchoalveolar lavage studies. Eur Resp Rev 1: 272–275

    Google Scholar 

  49. Roberts JA, Bradding P, Walls AF, Holgate ST, Howarth PH (1992) The effect of salmeterol xinafoate therapy on lavage findings in asthma. Am Rev Resp Dis 145: A418

    Google Scholar 

  50. Roberts JA, Bradding P, Walls AF, Britten KM, Wilson S, Holgate ST, Howarth PH (1992) The influence of salmeterol xinafoate on mucosal inflammation in asthma. Am Rev Resp Dis 145: A418

    Google Scholar 

  51. Gratziou C, Roberts J A, Bradding P, Holgate S T, Howarth P H (1992) The influence of the long acting β-agonist salmeterol xinafoate on T-lymphocyte lavage populations and activation status in asthma. Am Rev Resp Dis 145: A67

    Google Scholar 

  52. Gardiner PV, Ward C, Booth H, Allison A, Hendrick DJ, Walters EH (1994) Effect of eight weeks of treatment with salmeterol on bronchoalveolar lavage inflammatory indices in asthmatics. Am J Resp Crit Care Med 150: 1006–1011

    PubMed  CAS  Google Scholar 

  53. Wong BJO, Dolovich J, Ramsdale HE, O’Byrne PM, Gontovnick L, Denburg JA, Hargreave FE (1992) Formoterol compared with beclomethasone and placebo on allergen-induced asthmatic responses. Am Rev Resp Dis 146: 1156–1160

    PubMed  CAS  Google Scholar 

  54. Pedersen B, Dahl R, Larsen BB, Venge P (1993) The effect of salmeterol on the early and late phase reaction to bronchial allergen and postchallenge variation in bronchial reactivity, blood eosinophils, serum eosinophil cationic protein and serum eosinophil protein X. Allergy 48: 377–382

    Article  PubMed  CAS  Google Scholar 

  55. Weersink E J M, Postma D S, Aalbers R, De Monchy J G R (1994) Early and late asthmatic reaction after allergen challenge. Resp Med 88: 103–114

    Article  CAS  Google Scholar 

  56. Pizzichini M M M, Kidney J C, Wong B J O, Morris M M, Efthimiadis A, Dolovich J, Hargreave F E (1996) Effect of salmeterol compared with beclomethasone on allergen-induced asthmatic and inflammatory responses. Eur Respir J 9: 449–455

    Article  PubMed  CAS  Google Scholar 

  57. Twentyman O P, Finnerty J P, Holgate S T (1991) The inhibitory effect of nebulized albuterol on the early and late asthmatic reactions and increase in airway responsiveness provoked by inhaled allergen in asthma. Am Rev Resp Dis 144: 782–787

    Article  PubMed  CAS  Google Scholar 

  58. Twentyman OP, Finnerty JP, Harris A, Palmer J, Holgate ST (1990) Protection against allergen induced asthma by salmeterol. Lancet 336: 1338–1342

    Article  PubMed  CAS  Google Scholar 

  59. Sears M, Taylor DR, Print CG, Lake DC, Li Q, Flannery EM, Yates DM, Lucas MK, Herbison GP (1990) Regular inhaled β-agonist treatment in bronchial asthma. Lancet 336: 1391–1396

    Article  PubMed  CAS  Google Scholar 

  60. Pearlman DS, Chervinsky P, LaForce C, Seltzer JM, Southern DL, Kemp JP, Dockhorn RJ, Grossman J, Liddle RF, Yancey SW, Cocchetto DM, Alexander WJ, Van As A (1992) A comparison of salmeterol with albuterol in the treatment of mild-to-moderate asthma. New Engl J Med 327: 1420–1425

    Article  PubMed  CAS  Google Scholar 

  61. D’Alonzo GE, Nathan RA, Henochowicz S, Morris RJ, Ratner P, Rennard SI (1994) Salmeterol xinafoate as maintenance therapy with albuterol in patients with asthma. JAMA 271: 1412–1416

    Article  PubMed  Google Scholar 

  62. Drazen JM, Israel E, Boushey HA, Chinchilli VM, Fahy JV, Fish JE, Lazarus SC, Lemanske RF, Martin RJ, Peters SP, Sorkness C, Szefler SJ (1996) Comparison with regularly scheduled with as-needed use of albuterol in mild asthma. New Engl J Med 335: 841–847

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Basel AG

About this chapter

Cite this chapter

Coon, J.S.T., Tattersfield, A.E. (1999). β2-Agonists. In: Sampson, A.P., Church, M.K. (eds) Anti-Inflammatory Drugs in Asthma. Progress in Inflammation Research. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8751-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8751-9_4

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9757-0

  • Online ISBN: 978-3-0348-8751-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics