Skip to main content

Anti-Inflammatory Drugs in Asthma: The Pathophysiology of Asthma

  • Chapter
Anti-Inflammatory Drugs in Asthma

Part of the book series: Progress in Inflammation Research ((PIR))

  • 109 Accesses

Abstract

Asthma is a chronic condition characterised by widespread, variable and reversible airflow obstruction which is either spontaneous or pharmacologically induced. The underlying pathophysiological feature of asthma is increased airway responsiveness which develops on a basis of diffuse bronchial inflammation. The prevalence of asthma is increasing worldwide despite improved treatment which has resulted from a more comprehensive understanding of its pathogenesis [1]. In most countries asthma affects between 4 and 8% of the population, with a trend towards an increase in morbidity as judged by increased hospital admissions [2]. The reasons for this are unclear, but environmental factors such as indoor and outdoor air pollution and changes in lifestyle are considered to be amongst the contributing factors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Davies RJ, Tang J, Abdelaziz MM et al (1997) New insights into the understanding of asthma. Chest 111: 2–10

    Google Scholar 

  2. Sandford A, Weir T, Pare Ph (1996) The genetics of asthma. Am J Respir Crit Care Med 153: 1749–1765

    PubMed  CAS  Google Scholar 

  3. Mehlhop PD, Van de Rijn M, Goldberg AB et al (1997) Allergen-induced bronchial reactivity and eosinophilic inflammation occur in the absence of IgE in a mouse model of asthma. Proc Natl Acad Sci USA 94: 1344–1349

    PubMed  CAS  Google Scholar 

  4. Fahy JV, Fleming E, Wong HH et al (1997) The effect of an anti-IgE monoclonal antibody on the early-and late responses to allergen inhalation. Am J Respir Crit Care Med 155: 1828–1834

    PubMed  CAS  Google Scholar 

  5. Corne J, Djukanovic R, Lynette T, Holgate ST et al (1997) The effect of intravenous administration of a chimeric anti-IgE antibody on serum IgE levels in atopic subjects: Efficacy, safety and pharmacokinetics. J Clin Invest 99: 879–887

    PubMed  CAS  Google Scholar 

  6. Holgate ST (1997) Asthma: A dynamic disease of inflammation and repair. The rising trends in asthma. The Ciba Foundation Bulletin 206: 5–34

    CAS  Google Scholar 

  7. Morton NE (1996) Statistical consideration for genetic analysis of atopy and asthma, In: DA Meyers, SB Liggett (eds): The genetics of asthma. Marcel Dekker, New York, 367–378

    Google Scholar 

  8. Edfors-Lubs M (1971) Allergy in 7,000 twin pairs. Acta Allergol 26: 249–285

    PubMed  CAS  Google Scholar 

  9. Cookson W, Sharp PA, Faux JA et al (1989) Linkage between IgE responses underlying asthma and rhinitis and chromosome 11q13. Lancet 1: 1292–1295

    PubMed  CAS  Google Scholar 

  10. Young RP, Lynch J, Sharp PA et al (1992) Confirmation of genetic linkage between atopic IgE responses and chromosome 11q13. J Med Genetics 29: 236–238

    CAS  Google Scholar 

  11. Sandford AJ, Shirakawa T, Moffatt MF (1993) Localisation of atopy and the β subunit of the high affinity IgE receptor(FcεRI) on chromosome 11q13. Lancet 341: 332–334

    PubMed  CAS  Google Scholar 

  12. Manian P (1997) Genetics of asthma: A review. Chest 112: 1397–1408

    PubMed  CAS  Google Scholar 

  13. Shirakawa T, Li A, Dubowitz M et al (1994) Association between atopy and variants of the β subunit of the high affinity IgE receptor. Nat Genetics 7: 125–130

    CAS  Google Scholar 

  14. Hill MR, Cookson W (1996) A new variant of the β subunit of the high affinity receptor for IgE (FcεRI-β E237G): associations with measures of atopy and bronchial hyper-reponsiveness. Hum Mol Genet 5: 959–962

    PubMed  CAS  Google Scholar 

  15. Chandrashekharappa SC, Rebelesky MS, Firak TA et al (1990) A long range restriction map of the interleukin-4 and IL-5 linkage group on chromosome 5. Genomics 6: 94–99

    Google Scholar 

  16. Marsh DG, Neely JD, Breazeale DR et al (1994) Linkage analysis of IL-4 and other chromosome 5q31.1 markers and total serum IgE concentrations. Science 264: 1152–1156

    PubMed  CAS  Google Scholar 

  17. Meyers DA, Postma DS, Panhuysen CIM et al (1994) Evidence for a locus regulating total serum IgE mapping to chromosom 5. Genomics 23: 464–470

    PubMed  CAS  Google Scholar 

  18. Postma DS, Bleecker ER, Amelung PJ et al (1995) Genetic susceptibility to asthma-bronchial hyperresponsiveness co-inherited with a major gene for atopy. N Engl J Med 333: 894–900

    PubMed  CAS  Google Scholar 

  19. Barnes KC, Neely JD, Duffy DL et al (1996) Linkage of asthma and total IgE concentration to markers on chromosome 12q: evidence from Afro-Carribean and Caucasian populations. Genomics 37: 41–50

    PubMed  CAS  Google Scholar 

  20. Wilkinson J, Thomas S, Loi P et al (1996) Evidence for linkage for atopy and asthma to markers on chromosome 12q. Eur Respir J 9: 435s

    Google Scholar 

  21. Howell WM, Holgate ST (1995) HLA genetics and allergic disease. Thorax 50: S15–S18

    Google Scholar 

  22. Hsieh K, Shieh C, Hsieh R et al (1991). Association of HLA-DQw2 with Chinese childhood asthma. Tissue antigens 38: 181–182

    PubMed  CAS  Google Scholar 

  23. Bignon JS, Yolande A, Ju L et al (1994) HLA class II alleles in isocyanate-induced asthma. Am J Respir Grit Care Med 149: 71–75

    CAS  Google Scholar 

  24. Moffatt MF, Hill MR, Cornelis F et al (1994) Genetic kinkage of T cell receptor α/δ complex to specific IgE responses. Lancet 343: 1597–1600

    PubMed  CAS  Google Scholar 

  25. Rosenwasser LJ (1997) Genetics of atopy and asthma: promoter-based candidate gene studies for IL-4. Int Arch Allergy Immunol 113: 61–64

    PubMed  CAS  Google Scholar 

  26. Cooke RA, Vander Veer A (1916) Human sensitisation. J Immunol 1: 201–305

    CAS  Google Scholar 

  27. Ruiz RGG, Richards D, Kemeny DM et al (1991) Neonatal IgE: A poor screen for atopic disease. Clin Exp Allergy 21: 467–472

    PubMed  CAS  Google Scholar 

  28. D’Andrea A, Aste-Amezaga M, Valianta NM et al (1993) IL-10 inhibits human lymphocyte IFNγ production by suppressing natural killer cell stimulatory factor/IL-12 synthesis in accessory cells. J Exp Med 178: 1041–1048

    PubMed  Google Scholar 

  29. Warner J, Jones AC, Miles EA et al (1997) Prenatal origins of allergy and asthma. The rising trends in asthma. Ciba Foundation Symposium 206: 220–232

    PubMed  CAS  Google Scholar 

  30. Warner JA, Miles EA, Jones AC et al (1994) Is deficiency of interferon gamma production by allergen triggered blood cells a predictor of atopic eczema. Clin Exp Allergy 24: 423–430

    PubMed  CAS  Google Scholar 

  31. Nicod LP (1996) Role of antigen-presenting cells in lung immunity. Eur Respir Rev 6: 142–150

    Google Scholar 

  32. Sporik R, Holgate ST, Platts-Mills TAE et al (1990) Exposure to house dust mite allergen (Der P1) and the development of allergy in childhood: A prospective study. N Eng J Med 323: 502–507

    CAS  Google Scholar 

  33. Warner JA, Jones AC, Miles EA et al (1996) Materno-fetal interaction and allergy. Allergy 51: 447–451

    PubMed  CAS  Google Scholar 

  34. Azzawi M, Johnston PW, Majumdar S et al (1992) T lymphocytes and activated eosinophils in asthma and cystic fibrosis. Am Rev Respir Dis 145: 1477–1482

    PubMed  CAS  Google Scholar 

  35. Kay AB (1996) Pathology of mild, severe and fatal asthma. Am J Respir Crit Care Med 154: S66–S69

    PubMed  CAS  Google Scholar 

  36. Sur S, Crotty TB, Kephart GM et al (1993) Sudden onset fatal asthma — A distinct entity with few eosinophils and relatively more neutrophils in the airway submucosa? Am Rev Respir Dis 148: 713–719

    PubMed  CAS  Google Scholar 

  37. Koshino T, Arai Y Miyamoto Y et al (1996) Airway basophil and mast cell density in patients with bronchial asthma relationship to bronchial hyperresponsiveness. J Asthma 33(2): 89–95

    PubMed  CAS  Google Scholar 

  38. Linsley PS, Ledbetter JA (1993) The role of CD28 receptor during T cell responses to antigen. Annu Rev Immunol 11: 191–212

    PubMed  CAS  Google Scholar 

  39. Holt PG (1996) Current concepts in pulmonary immunology: regulation of primary and secondary responses to inhaled antigen. Eur Respir Rev 6(36): 128–135

    Google Scholar 

  40. Semper AE, Hartley JA (1996) Dendritic cells in the lung-what is their relevance to asthma. Clin Exp Allergy 26(5): 485–490

    PubMed  CAS  Google Scholar 

  41. Moller GM, Overbeek SE, Van-HeldenMeeuwsen CG et al (1996) Increased numbers of dendritic cells in the bronchial mucosa of atopic asthmatic patients: downregulation by inhaled corticosteroids. Clin Exp Allergy 26(5): 517–524

    PubMed  CAS  Google Scholar 

  42. Holt PG (1986) Downregulation of immune responses in the lower respiratory tract: The role of alveolar macrophages. Clin Exp Immunol 63: 261–270

    PubMed  CAS  Google Scholar 

  43. Sousa AR, Trigg CJ, Lane SJ et al (1997) Effect of inhaled glucocorticosteroids on IL-1β and IL-1 receptor antagonist (IL-lra) expression in asthmatic bronchial epithelium. Thorax 52: 407–410

    PubMed  CAS  Google Scholar 

  44. Aubas P, Cosso B, Godard P et al (1984) Decreased suppressor cell activity of alveolar macrophages in bronchial asthma. Am Rev Respir Dis 130: 875–878

    PubMed  CAS  Google Scholar 

  45. Gosset P, Lassalle P, Tonnel AB et al (1988) Production of an interleukin 1 inhibitory factor by human alveolar macrophages from normals and allergic asthmatic patients. Am Rev Respir Dis 138: 40–46

    PubMed  CAS  Google Scholar 

  46. Metzger ZWI, Hoffeld JT, Oppenheim JJ (1980) Macrophage mediated suppression. J Immunol 124: 983–988

    PubMed  CAS  Google Scholar 

  47. Lyons CR, Ball EJ, Toews GB et al (1986) Inability of human alveolar macrophages to stimulate resting T-cells correlates with decreased antigen-specific T-cell macrophage binding. J Immunol 137: 1173–1180

    PubMed  CAS  Google Scholar 

  48. Van Kooyk Y, Van de Wiel-Van Kemenade P et al (1989) Enhancement of LFA-1 mediated cell adhesion by triggering through CD2 or CD3 on T-lymphocytes. Nature 342: 811–813

    PubMed  Google Scholar 

  49. Chelen CJ, Fang Y, Freeman GJ et al (1995) Human alveolar antigens present antigen ineffectively due to defective expression of B-7 co-stimulatory cell surface molecules. J Clin Invest 95: 1415–1421

    PubMed  CAS  Google Scholar 

  50. Agea E, Spinozzi F et al (1998) Expression of B7 costimulatory molecules and CD1a antigen by alveolar macrophages in bronchial asthma. Clin Exp Allergy 28: 1359–1367

    PubMed  CAS  Google Scholar 

  51. van Gool S, Vandenberghe P, De Boer M, Ceuppens JL (1996) CD80, CD86 and CD40 provide accessory signals in a multiple-step T-cell activation model. Immunol Rev 153: 111: 129–155

    Google Scholar 

  52. Bluestone JA (1997) Is CTLA-4 a master switch for peripheral T cell tolerance? J Immunol 58: 1989–1993

    Google Scholar 

  53. Krummel MF, Allison JP (1995) CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. J Exp Med 182: 459–465

    PubMed  CAS  Google Scholar 

  54. Klinzman SJ, DeSanctis GT, Cemades M et al (1996) Inhibition of T cell costimulation abrogates airway hyperresponsiveness in a murine model. J Clin Invest 98: 2693–2699

    Google Scholar 

  55. Wu Y, Guo Y, Huang A et al (1997) CTLA-4-B-7 interaction is sufficient to costimulate T cell clonal expansion. J Exp Med 185(7): 1327–1335

    PubMed  CAS  Google Scholar 

  56. Liu Y (1997) Is CTLA-4 a negative regulator for T cell activation? Immunology Today 18(12): 569–572

    PubMed  CAS  Google Scholar 

  57. Lenschow DJ, Walunas TL, Bluestone JA (1996) CD28/B7 system of cell costimulation. Annu Rev Immunol 14: 233–258

    PubMed  CAS  Google Scholar 

  58. Tsuyuki S, Tsuyuki J, Einsle K et al (1997) Co-stimulation through B7-2(CD86) is required for the induction of a lung mucosal T helper cell 2(TH2)immune response and altered airway hyperresponsiveness. J Exp Med 185(9): 1671–1679

    PubMed  CAS  Google Scholar 

  59. Keane-Myers A, Gause WC, Linsley PS et al (1997) B7-CD28/CTLA4 costimulatory pathways are required for the development of T helper cell 2-mediated allergic airway responses to inhaled antigens. J Immunol 158: 2042–2049

    PubMed  CAS  Google Scholar 

  60. Keane-Myers A, Gause WC, Finkelman FD et al (1998) Development of murine allergic asthma is dependent upon B7-2 costimulation. J Immunol 160: 1036–1043

    PubMed  CAS  Google Scholar 

  61. van Neerven RJ, van de Pol MM, van der Zee JS et al (1998) Inhibition of allergen-specific proliferation and cytokine production of human T lymphocytes by blocking the CD28-CD86 costimulatory pathway. Clin Exp Allergy 28(7): 808–816

    PubMed  Google Scholar 

  62. Jaffer Z, Roberts K, Pandit A et al (1997) B7 costimulation is required for IL-5 and IL-13 expression by T cells resident in bronchial biopsy tissue of asthmatics after allergen stimulation. Immunology 92(S1): 45–A12.15

    Google Scholar 

  63. Lebwohl MJ, Kang S, Guzzo C et al (1997) CTLA4-Ig (BMS-188667)-mediated blockade of T cell co-stimulation in patients with psoriasis vulgaris. J Inv Dermatology 108: 570, A198

    Google Scholar 

  64. Cees van Cooten, Banchereau J (1997) Functions of CD40 on B cells, dendritic cells and other cells. Current Opinions in Immunology 9: 330–337

    Google Scholar 

  65. Boussiotis VA, Freeman GJ, Gribben JG, Nadler LM (1996) The role of B7-1/B7-2: CD28/CTLA4 pathways in the prevention of anergy, induction of productive immunity and downregulation of the immune response. Immunological Reviews 153: 5–25

    PubMed  CAS  Google Scholar 

  66. Maurer D, Ebner C, Reininger B et al (1995) The high affinity IgE receptor (Fcε;RI) mediates IgE-dependent allergen presentation. J Immunol 154: 6285–6290

    PubMed  CAS  Google Scholar 

  67. Tunon-de-lara JM, Redington AE, Bradding P, Holgate ST et al (1996) Dendritic cells in normal and asthmatic airways: expression of the alpha subunit of the high affinity IgE receptor (FcERI-a). Clin Exp Allergy 26: 648–655

    PubMed  CAS  Google Scholar 

  68. Barnes PJ, Karin M (1997) Nuclear factor-KB — A pivotal transcription factor in chronic inflammatory diseases. N Engl J Med 336(15): 1066–1071

    PubMed  CAS  Google Scholar 

  69. Muegge K, Durum SK (1990) Cytokines and transcription factors. Cytokine 2: 1–8

    PubMed  CAS  Google Scholar 

  70. Adcock IM, Gelder CM, Shirasaki H et al (1992) Effects of steroids on transcription factors in human lung. Am Rev Respir Dis 145: A834

    Google Scholar 

  71. Barnes PJ, Adcock IM (1995) Transcription factors. Clin Exp Allergy 25(S2): 46–49

    PubMed  Google Scholar 

  72. Salvi SS, Semper AE, Papi A et al (1998) Human lung epithelial cells express IL-5 mRNA. J Allergy Clin Immunol 101(1): S19

    Google Scholar 

  73. Romagniani S (1990) Regulation and deregulation of human IgE synthesis. Immunol Today 11: 316–321

    Google Scholar 

  74. Schleimer RP, Sterbinsky CA, Kaiser CA et al (1992) Interleukin 4 induces adherence of human eosinophils and basophils but not neutrophils to endothelium: association with expression of VCAM-1. J Immunology 148: 1086–1092

    CAS  Google Scholar 

  75. Walsh GM, Mermod JJ, Hartneil A et al (1991) Human eosinophil, but not neutrophil, adherence to IL-1 stimulated HWEC is α4β1 (VLA-4) dependent. J Immunol 146: 3419

    PubMed  CAS  Google Scholar 

  76. Pretolani M, Goldman M (1997) IL-10: A potential therapy for allergic inflammation Immunol Today 277-280

    Google Scholar 

  77. Naseer T, Minshall EM, Leung DYM et al (1997) Expression of IL-12 and IL-13 mRNA in asthma and their modulation in response to steroid therapy. Am J Respir Crit Care Med 155: 845–851

    PubMed  CAS  Google Scholar 

  78. Robinson DS, Hamid Q, Ying S et al (1992) Predominant Th2-type bronchoalveolar lavage T lymphocyte population in atopic asthma. N Eng J Med 326: 298–304

    CAS  Google Scholar 

  79. Del Prete G, de Carli M, Almerigogna F et al (1993) Human IL-10 is produced by Thl and Th2 T cell clones and inhibits their antigen specific proliferation and cytokine production. J Immunol 150: 353–360

    PubMed  Google Scholar 

  80. Robinson DS, Tsicopoulos A, Meng Q et al (1996) Increased IL-10 mRNA expression in atopic allergy and asthma. Am J Respir Cell Mol Biol 14: 113–117

    PubMed  CAS  Google Scholar 

  81. Hseih CS, Macatonia SE, Tripp CS et al (1993) Development of Thl CD4+ T cells through IL-12 produced by Listeria induced macrophages. Science 260: 547–549

    Google Scholar 

  82. Manetti R, Parronchi P, Guidizi MG et al (1993) Natural killer stimulatory factor (IL-12) induces Th1-specific immune responses and inhibits the development of IL-4 producing Th cells. J Exp Med 177: 1199–1204

    PubMed  CAS  Google Scholar 

  83. Gavett SH, O’Hearn DJ, Li Z et al (1995) Interleukin-12 inhibits antigen-induced airway hyperresponsiveness, inflammation and Th2 cytokine expression in mice. J Exp Med 182(5): 1527–1536

    PubMed  CAS  Google Scholar 

  84. Defrance T, Carayon P, Billian G et al (1994) Interleukin 13 is a B-cell stimulating factor. J Exp Med 179: 135–143

    PubMed  CAS  Google Scholar 

  85. Kroegel C, Julius P, Matthys H et al (1996) Endobronchial secretion of IL-13 following local allergen challenge in atopic asthma: relationship to IL-4 and eosinophil counts. Eur Respir J 9: 899–904

    PubMed  CAS  Google Scholar 

  86. Humbert M, Durham SR, Kimmitt P et al (1997) Elevated expression of mRNA encoding IL-13 in the bronchial mucosa of atopic and nonatopic subjects with asthma. J Allergy Clin Immunol 99: 657–665

    PubMed  CAS  Google Scholar 

  87. Bochner BS, Klunk DA, Sterbinsky SA et al (1995) IL-13 selectively induces vascular cell adhesion molecule-lexpression in human endothelial cells. J Immunol 154: 799–803

    PubMed  CAS  Google Scholar 

  88. Shau-Ku Huang, Hui-Qing Xiao, Jorg Kleine-Tebbe et al (1995) IL-13 expression at the sites of allergen challenge in patients with asthma. J Immunol 155: 2688–2694

    PubMed  CAS  Google Scholar 

  89. Cruikshank WW, Long A, Tarpy RE et al (1995) Early identification of IL-16 (Lymphocyte chemoattractant factor) and macrophage inflammatory protein 1α(MIP1α) in BALF of antigen-challenged asthmatics. Am J Respir Cell Mol Biol 13: 738–747

    PubMed  CAS  Google Scholar 

  90. Cruikshank WW, Berman JS, Theodore AC et al (1987) Lymphokine activation of T4+ lymphocytes and monocytes. J Immunol 138: 3817–3825

    PubMed  CAS  Google Scholar 

  91. Laberge S, Ernest P, Ghaffar O et al (1997) Increased expression of IL-16 in bronchial mucosa of subjects with atopic asthma. Am J Respir Cell Mol Biol 17(2): 193–202

    PubMed  CAS  Google Scholar 

  92. Bellini A, Yoshimura H, Vitori E et al (1993) Bronchial epithelial cells of patients with asthma release chemoattractant factors for T lymphocytes. J Allerg Clin Immunol 92: 412–424

    CAS  Google Scholar 

  93. Okamura H, Tsutsui H, Komatsu T et al (1995) Nature 378: 88–91

    PubMed  CAS  Google Scholar 

  94. Yoshimoto T, Okamura H, Tagawa Y et al (1997) Interleukin 18 togethor with interleukin 12 inhibits IgE production by induction of IFNy production from activated B cells. Proc Natl Acad Sci USA 94(8): 3948–3953

    PubMed  CAS  Google Scholar 

  95. Bradding P (1996) Human mast cell cytokines. Clin Exp Allergy 26: 13–19

    PubMed  CAS  Google Scholar 

  96. Bradding P, Roberts JA, Britten KM et al (1994) Interleukin-4,-5, and-6 and tumor necrosis factor-α in normal and asthmatic airways: Evidence for the human mast cell as a source of these cytokines. Am J Respir Cell Mol Biol 10: 471–480

    PubMed  CAS  Google Scholar 

  97. Andersson U, Matsuda T (1989) Human interleukin 6 and tumor necrosis factor-α production studied at a single cell level. Eur J Immunol 19: 1157–1160

    PubMed  CAS  Google Scholar 

  98. Broide DH, Lotz M, Cuomo AJ et al (1992) Cytokines in symptomatic asthma airways. J Allerg Clin Immunol 89: 958–967

    CAS  Google Scholar 

  99. Kips JC, Tavernier J, Pauwels RA (1992) Tumor necrosis factor (TNF) causes bronchial hyperresponsiveness in rats. Am Rev Respir Dis 145: 2–336

    Google Scholar 

  100. Ming WJ, Bersani L, Mantovani A (1987) Tumor necrosis factor is chemotactic for monocytes and polymorphonuclear leucocytes. Immunol 138: 1469–1474

    CAS  Google Scholar 

  101. Silberstein DS, Davis jR (1986) Tumor necrosis factor enhances eosinophil toxicity to Schistosoma Mansoni larvae. Proc Natl Acad Sci USA 83: 1055–1059

    PubMed  CAS  Google Scholar 

  102. Slungaard A, Vercellotte GM, Walker G et al (1990) Tumor necrosis factor/cachectin stimulates eosinophil oxidant production and toxicity towards human endothelium. J Exp Med 171: 2025–2031

    PubMed  CAS  Google Scholar 

  103. Bevilacqua MP, Stengelin S, Gimbrone MA et al (1989) Endothelial leucocyte adhesion molecule-1: An inducible receptor for neutrophils related to complement regulatory proteins and lectins. Science 243: 1160–1165

    PubMed  CAS  Google Scholar 

  104. Osborn L, Hession R, Tizard R et al (1989) Direct expression and cloning of vascular cell adhesion molecule-1, a cytokine-endothelial protein that binds to lymphocytes. Cell 59: 1203–1211

    PubMed  CAS  Google Scholar 

  105. Pober JS, Gimbrone MA, Lapierre LA et al (1986) Overlapping pattern of activation of human endothelial cells by interleukin 1, Tumor necrosis factor, and immune interferon. Immunol 137: 1893–1896

    CAS  Google Scholar 

  106. Shah A, Church MK, Holgate ST (1995) Tumor necrosis factor-α: a potential mediator of asthma. Clin Exp Allergy 25: 1038–1044

    PubMed  CAS  Google Scholar 

  107. Corrigan CJ, Hartnell A, Kay AB (1988) T lymphocyte activation in acute severe asthma. Lancet I: 1129–1132

    Google Scholar 

  108. Azzawi M, Bradley B, Jeffery PK et al (1990) Identification of activated T lymphocytes and eosinophils in bronchial biopsies in stable atopic asthmatics. Am Rev Respir Dis 142: 1407–1413

    PubMed  CAS  Google Scholar 

  109. Hamid Q, Barkans J, Robinson DS et al (1992) Co-expression of CD25 and CD3 in atopic allergy and asthma. Immunol 75: 659–663

    CAS  Google Scholar 

  110. Robinson DS, Bentley AM, Hartnell A et al (1993) Activated memory T helper cells in bronchoalveolar lavage from atopic asthmatics. Relationship to asthma symptoms, lung function and bronchial responsiveness. Thorax 48: 26–32

    PubMed  CAS  Google Scholar 

  111. Ying S, Durham SR, Corrigan CJ et al (1995) Phenotype of cells expressing mRNA for Th2-type (IL-4 and IL-5) and Th1-type (IL-2 and interferon gamma) cytokines in bronchoalveolar lavage and bronchial biopsies from atopic asthmatics and normal control subjects. Am J Respir Cell Mol Biol 12: 477–487

    PubMed  CAS  Google Scholar 

  112. Humbert M, Durham SR, Ying S et al (1996) IL-4 and IL-5 mRNA and protein in bronchial biopsies from atopic and non-atopic asthmatics: evidence against intrinsic asthma being a distinct immunopathological entity. Am J Respir Crit Care Med 154: 1497–1504

    PubMed  CAS  Google Scholar 

  113. Center DM, Kornfeld H, Cruikshank W (1996) Interleukin 16 and its function as a CD4 ligand. Immunol Today 476-481

    Google Scholar 

  114. Gause WC, Mitro V, Via C et al (1997) Do effector and memory T helper cells also need B7 ligand costimulatory signals? J Immunol 159: 1055–1058

    PubMed  CAS  Google Scholar 

  115. Corrigan CJ, Hamid Q, North J et al (1995) Peripheral blood CD4 but not CD8 T-lymphocytes in patients with exacerbation of asthma transcribe and translate mRNA encoding cytokines which prolong eosinop~hil survival in the context of a Th2-type pattern: effect of glucocorticosteroid therapy. Am J Respir Cell Mol Biol 12: 567–578

    PubMed  CAS  Google Scholar 

  116. Hamid Q, Azzawi M, Ying S et al (1991) Expression of mRNA for interleukin-5 in mucosal bronchial biopsies from asthmatics. J Clin Invest 87: 1541–1546

    PubMed  CAS  Google Scholar 

  117. Robinson DS, Hamid Q, Ying S (1993) Prednisolone treatment in asthma is associated with modulation of broncho-alveolar lavage cell IL-4, IL-5 and interferon-γ cytokine gene expression. Am Rev Respir Dis 148: 401–406

    PubMed  CAS  Google Scholar 

  118. Bentley AM, Hamid Q, Robinson DS et al (1996) Prednisolone treatment in asthma. Reduction in the number of eosinophils, T-cells, tryptase-only positive mast cells, and modulation of IL-4, IL-5 and interferon gamma cytokine gene expression within the bronchial mucosa. Am J Respir Crit Care Med 153: 551–556

    PubMed  CAS  Google Scholar 

  119. Robinson DS, Ying S, Bentley AM et al (1993) Relationship among numbers of bron-choalveolar lavage cells expressing mRNA for cytokines, asthma symptoms and airway methacholine responsiveness in atopic asthma. Allergy Clin Immunol 92: 397–403

    CAS  Google Scholar 

  120. Kay AB (1997) T cells as orchestrators of the asthmatic response. The rising trends in asthma. Ciba Foundation Symposium 206: 56–70

    PubMed  CAS  Google Scholar 

  121. Sun Ying, Humbert M, Barkans J et al (1997) Expression of IL-4 and IL-5 mRNA and protein product by CD4+ and CD8+ T-cells, eosinophils and mast cells in bronchial biopsies obtained from atopic and non-atopic asthmatics. J Immunol 158: 3539–3544

    Google Scholar 

  122. Leung DYM, Martin RJ, Szefler SJ et al (1995) Dysregulation of IL-4, IL-5 and IFNγ gene expression in steroid-resistant asthma. J Exp Med 181: 33–40

    PubMed  CAS  Google Scholar 

  123. Sher E, Leung DYM, Surs W et al (1994) Steroid resistant asthma. Cellular mechanisms contributing to inadequate response to glucocorticosteroid therapy. J Clin Invest 93: 33–39

    PubMed  CAS  Google Scholar 

  124. Szefler SJ, Leung DYM (1997) Glucorticoid-resistant asthma: pathogenesis and clinical implications for management. Eur Respir J 10: 1640–1647

    PubMed  CAS  Google Scholar 

  125. Lane SJ, Lee TH (1997) Mechanisms and detection of glucocorticoid insensitivity in asthma. ACI International 9/6

    Google Scholar 

  126. Adcock IM, Lane SJ, Brown CR et al (1995) Abnormal glucocorticosteroid receptor-activator protein 1 interaction in steroid resistant asthma. J Exp Med 182: 1951–1958

    PubMed  CAS  Google Scholar 

  127. Alexander AG, Barnes NC, Kay AB (1992) Trial of cyclosporin A in corticosteroid-dependent chronic severe asthma. Lancet 339: 324–328

    PubMed  CAS  Google Scholar 

  128. Lock SH, Kay AB, Barnes NC (1996) Double-blind placebo-controlled study of cyclosporin A as a corticosteroid-sparing agent in corticosteroid-dependant asthma. Am J Respir Crit Care Med 153: 509–514

    PubMed  CAS  Google Scholar 

  129. Sihra BS, Durham SR, Walker S et al (1997) Effect of Cyclosporin A on the allergen-induced late asthmatic response. Thorax 52: 447–452

    PubMed  CAS  Google Scholar 

  130. Kay AB, Frew AJ, Corrigan CJ et al (1998) The T cell hypothesis of chronic asthma. In: AB Kay (ed): Allergy and allergic diseases. Blackwell Science, Oxford

    Google Scholar 

  131. Teran LM, Carroll M, Frew AJ (1996) Leucocyte recruitment after local endobronchial allergy challenge in asthma: relationship to procedure and to airway IL-8 release. Am J Respir Crit Care Med 154: 469–476

    PubMed  CAS  Google Scholar 

  132. Holgate ST (1993) Mediators and cytokine mechanisms in asthma. Altyounan address. Thorax 48: 103–109

    PubMed  CAS  Google Scholar 

  133. Louis R, Shute J, Biagi S et al (1997) Cell infiltration, ICAM-1 expression, and eosinophil chemotactic activity in asthmatic sputum. Am J Respir Crit Care Med 155: 466–472

    PubMed  CAS  Google Scholar 

  134. Weiler PF (1997) Updates on cells and cytokines. Human eosinophils. J Allergy Clin Immunol 100: 283–287

    Google Scholar 

  135. Moqbel R, Ying S, Barkans J et al (1995) Identification of mRNA for IL-4 in human eosinophils with granule localisation and release of the translated product. J Immunol 155(10): 4939–4947

    PubMed  CAS  Google Scholar 

  136. Makker HK, Holgate ST (1994) Mechanisms of exercise-induced asthma. Eur J Clin Inv 24: 571–585

    CAS  Google Scholar 

  137. Bradding P, Feather IH, Wilson S et al (1993) Immunolocalisation of cytokines in the nasal mucosa of normal and perennial rhinitic subiects: the mast cell as a source of IL-4, IL-5 and IL-6 in human allergic mucosal inflammation. J Immunol 151: 3853–3865

    PubMed  CAS  Google Scholar 

  138. Okayama Y, Lau LC-K, Church MK (1996) TNFα production by human lung mast cells in response to stimulation by stem cell factor and FcER1 cross-linkage. J Immunol; in press

    Google Scholar 

  139. Montefort S, Gratziou C, Goulding D (1994) Bronchial biopsy evidence for leucocyte infiltration and upregulation of leucocyte endothelial cell adhesion molecules 6 hours after local allergen challenge of sensitised asthmatic airway. J Clin Inv 93: 1411–1421

    CAS  Google Scholar 

  140. Campbell AM (1997) Bronchial epithelial cells in asthma. Allergy 52: 483–489

    PubMed  CAS  Google Scholar 

  141. Devalia JL, Campbell AM, Sapeford RJ et al (1993) Effects of nitrogen dioxide on synthesis of inflammatory cytokines expressed by human bronchial epithelial cells in vitro. Am J Respir Cell Mol Biol 9: 271–278

    PubMed  CAS  Google Scholar 

  142. Vignola AM, Campbell AM, Chanez P et al (1993) Activation by histamine of bronchial epithelial cells from nonasthmatic subjects. Am J Respir Cell Mol Biol 9: 411–417

    PubMed  CAS  Google Scholar 

  143. Altman LC, Ayars GH, Baker C et al (1993) Cytokines and eosinophil-derived cationic proteins upregulate ICAM-1 on human nasal epithelial cells. J Allergy Clin Immunol 92: 527

    PubMed  CAS  Google Scholar 

  144. Souques F, Crampette L, Mondain M et al (1995) Stimulation of dispersed nasal polyp cells by hyperosmolar solutions. J Allergy Clin Immunol 96: 980–985

    PubMed  CAS  Google Scholar 

  145. Kalinski P, Hilkens CMU, Snijders A et al (1997) IL-12 deficient dendritic cells, generated in the presence of PGE2 promote type 2 cytokine production in maturing human naive T helper cells. J Immunol 159: 28–35

    PubMed  CAS  Google Scholar 

  146. Campbell AM, Vignola AM, Chanez P et al (1994) Low affinity receptors for IgE on human bronchial epithelial cells. Immunol 82: 506–508

    CAS  Google Scholar 

  147. Marini M, Vittori E, Hollemborg J et al (1992) Expression of the potent inflammatory cytokines, GM-CSF and IL-6 and IL-8, in bronchial epithelial cells of patients with asthma. J Allergy Clin Immunol 89: 1001–1009

    PubMed  CAS  Google Scholar 

  148. Cromwell O, Hamid Q, Corrigan CJ et al (1992) Expression and generation of IL-8, IL-6 and GM-CSF by bronchial epithelial cells and enhancement by IL-1β and TNFα. Immunol 77: 330–337

    CAS  Google Scholar 

  149. Wang DH, Devalia JL, Xia C et al (1996) Expression of RANTES by human bronchial epithelial cells in vitro and in vivo and the effect of corticosteroids. Am J Respir Cell Mol Biol 14: 27–35

    PubMed  Google Scholar 

  150. Barnes PJ (1997) NFκB. N Engl J Med 336: 1066–1071

    PubMed  CAS  Google Scholar 

  151. Asano K, Nakamura H, Lilly CM et al (1997) IFNy induces prostaglandin GIH synthase-2 through an autocrine loop via the epidermal growth factor receptor in human bronchial epithelial cells. J Clin Inv 99: 1057–1063

    CAS  Google Scholar 

  152. Shibata Y, Nakamura H, Kato S et al (1996) Cellular detachment and deformation induce IL-8 gene expression in human bronchial epithelial cells. J Immunol 156: 772–777

    PubMed  CAS  Google Scholar 

  153. Wilson SJ, Leone BA, Anderson D, Manning A, Holgate ST (1999) Immunohistochemical analysis of the activation of NF-κB and expression of associated cytokines and adhesion molecules in human models of allergic inflammation. J Pathology; submitted for publication

    Google Scholar 

  154. Manolitsas ND, Trigg CJ, McAulay AE et al (1994) The expression of intercellular adhesion molecule-1 and the β1-integrins in asthma. Eur Respir J 7: 1439–1444

    PubMed  CAS  Google Scholar 

  155. Corne J, Holgate ST (1997) Mechanisms of virus induced exacerbations of asthma. Thorax 52: 380–389

    PubMed  CAS  Google Scholar 

  156. Vignola AM, Merendino AM, Chiapparo G et al (1999) Heterogeneous effects of TGFβ, EGF, IL-4 and IL-5 on ICAM-1 and α3β1 expression on fibronectin release by human pulmonary epithelial cells. Thorax; in press

    Google Scholar 

  157. Alving K, Weitzberg E, Lundberg JM (1993) Increased amounts of nitric oxide in exhaled air. Eur Resp J 6: 1268–1270

    Google Scholar 

  158. Kharitonov SA, Yates D, Robbins RA, Logan-Sinclair R et al (1994) Increased nitric oxide in exhaled air of asthmatic patients. Lancet 343: 133–135

    PubMed  CAS  Google Scholar 

  159. Nijkamp FP, Folkerts G (1997) Nitric oxide: Initiator and modulator. Clin Exp Allergy 27: 347–350

    PubMed  CAS  Google Scholar 

  160. Holgate ST (1996) The inflammation-repair cycle in asthma: possible new biomarkers of disease activity. Eur Respir Rev 6: 4–10

    Google Scholar 

  161. Barnes PJ (1995) Nitric oxide and airway disease. Ann Int Med 27: 91–97

    Google Scholar 

  162. Redington AE, Springall DR, Holgate S et al (1997) Airway endothelin levels in asthma: influence of allergen challenge and maintenance corticosteroid therapy. Eur Resp J 10: 1026–1032

    CAS  Google Scholar 

  163. Mattoli S, Mezzetti M, Riva G et al (1990) Specific binding of endothelin on human bronchial smooth muscle cells in culture and secretion of endothelin-like material from bronchial epithelial cells. Am J Resp Cell Mol Biol 3: 145–151

    CAS  Google Scholar 

  164. Yanagisawa M, Kurihara H, Kimura S et al (1988) A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 332: 411–415

    PubMed  CAS  Google Scholar 

  165. Springall DR, Howarth PH, Counihan H et al (1991) Endothelin immunoreactivity of airway epithelium in asthmatic patients. Lancet 337: 697–701

    PubMed  CAS  Google Scholar 

  166. Redington AE, Springall DR, Ghatei MA et al (1995) Endothelin in BALF and its relationship to airflow obstruction in asthma. Am Rev Resp Crit Care Med 151: 1034–1039

    CAS  Google Scholar 

  167. Newton R, Kuitert LM, Slater DM et al (1997) Cytokine induction of cytosolic phospholipase A2 and cyclooxygenase-2 mRNA is suppressed by glucocorticosteroids in human epithelial cells. Life Science 60: 67–78

    CAS  Google Scholar 

  168. Sousa A, Trigg CJ, Lane SJ et al (1997) Effect of inhaled glucocorticosteroids on IL-1β and IL-1ra expression in asthmatic bronchial epithelium. Thorax 52: 407–410

    PubMed  CAS  Google Scholar 

  169. Wilson S, Wallin A, Sandstrom T et al (1997) Effects of budesonide treatment on expression of NF-κB and NF-κB regulated cytokines and adhesion molecules in bronchial mucosa of mild asthmatics. Am J Respir Crit Care Med 155(2): A698

    Google Scholar 

  170. Brown PJ, Greville HW, Finucane KE (1980) Asthma and irreversible airflow obstruction. Thorax 35: 298–302

    Google Scholar 

  171. Huber HL, Koessler KK (1922) The pathology of bronchial asthma. Arch Int Med 30: 689–760

    Google Scholar 

  172. Ebina M, Takahashi T, Chiba T et al (1993) Cellular hypertrophy and hyperplasia of airway smooth muscles underlying bronchial asthma: a 3-D morphometric study. Am Rev Resp Dis 148: 720–726

    PubMed  CAS  Google Scholar 

  173. Takizawa T, Thurlbeck WM (1971) Muscle and mucus gland size in the major bronchi of patients with chronic bronchitis, asthma and asthmatic bronchitis. Am Rev Resp Dis 104: 331–336

    PubMed  CAS  Google Scholar 

  174. Li X, Wilson JW (1997) Increased vascularity of the bronchial mucosa in mild asthma. Am J Respir Crit Care Med 156: 229–233

    PubMed  CAS  Google Scholar 

  175. Hirst SJ (1996) Airway smooth muscle cell culture: Application to studies of airway wall remodelling and phenotype plasticity in asthma. Eur Respir J 9: 808–820

    PubMed  CAS  Google Scholar 

  176. Lynch DA, Newell JD, Tschomper BA et al (1993) Uncomplicated asthma in adults: comparison of CT appearances of the lungs in asthmatic and healthy subjects. Radiology 188: 829–833

    PubMed  CAS  Google Scholar 

  177. Paganin F, Seneterre E, Chanez P et al (1996) Computerised tomography of the lungs in asthma: influence of disease severity and aetiology. Am J Respir Crit Care Med 153: 110–114

    PubMed  CAS  Google Scholar 

  178. Roche WR, Beasley R, Williams JH et al (1989) Subepithelial fibrosis in the bronchi of asthmatics. Lancet i: 520–524

    Google Scholar 

  179. Brewster CEP, Howarth PH, Djukanovic R et al (1990) Myofibroblasts and subepithelial fibrosis in bronchial asthma. Am J Respir Cell Mol Biol 3: 507–511

    PubMed  CAS  Google Scholar 

  180. Wilson JW, Li X (1997) The measurement of reticular basement membrane and submucosal collagen in the asthmatic airway. Clin Exp Allergy 27: 363–371

    PubMed  CAS  Google Scholar 

  181. Redington AE, Howarth PH (1997) Airway wall remodelling in asthma. Thorax 52: 310–312

    PubMed  CAS  Google Scholar 

  182. Redington AE, Madden J, Frew AJ et al (1997) Transforming growth factor β1 in asthma-measurement in bronchoalveolar lavage fluid. Am J Respir Crit Care Med 156: 642–647

    PubMed  CAS  Google Scholar 

  183. Anwar AR, Moqbel R, Walsh GM et al (1993) Adhesion to fibroneetin prolongs eosinophil survival. J Exp Med 177: 839–843

    PubMed  CAS  Google Scholar 

  184. Georas SN, McIntyre WB, Ebisawa M (1993) Expression of a functional laminin receptor a6bl (VLA-6) on human eosinophil. Blood 82: 2872–2879

    PubMed  CAS  Google Scholar 

  185. Goldring K, Warner JA (1997) Cell matrix interactions in asthma. Clin Exp Allergy 27: 22–27

    PubMed  CAS  Google Scholar 

  186. Minshall EM, Leung DYM, Martin RJ et al (1997) Eosinophil-associated TGF-β1 mRNA expression and airways fibrosis in bronchial asthma. Am J Respir Cell Mol Biol 17: 326–333

    PubMed  CAS  Google Scholar 

  187. Shute J, Parmar J, Holgate ST (1997) Urinary glyeosaminoglyean levels are increased in acute severe asthma — a role for eosinophil-derived gelatinase B? Int Arch Allergy Immunol 113: 366–367

    PubMed  CAS  Google Scholar 

  188. Ruoss SJ, Hartmann T, Caughey GH (1991) Mast cell tryptase is a mitogen for cultured fibroblasts. J Clin Inv 88: 493–499

    CAS  Google Scholar 

  189. Cutz E, Levison H, Cooper DM (1978) Ultrastructure of airways in children with asthma. Histopathology 2: 407–421

    PubMed  CAS  Google Scholar 

  190. Djukanovic R, Wilson JW, Britten KM et al (1992) Effect of inhaled corticosteroids on airway inflammation and symptoms in asthma. Am Rev Respir Dis 145: 669–674

    PubMed  CAS  Google Scholar 

  191. Laitinen LA, Laitinen A (1996) Remodelling of asthmatic airways by glucocorticosteroids. J Allergy Clin Immunol 97: 153–158

    PubMed  CAS  Google Scholar 

  192. Djukanovic R, Howarth PH, Vrugt B et al (1995) Determinants of asthma severity. Int Arch Allergy Immunol 107: 389

    PubMed  CAS  Google Scholar 

  193. Walker, C, Kaegi MK, Braun P et al (1991) Activated T cells and eosinophilia in bronchoalveolar lavages from subjects with asthma correlated with disease severity. J Allergy Clin Immunol 88: 935–942

    PubMed  CAS  Google Scholar 

  194. Sont JK, Han J, van Krieken JM et al (1996) Relationship between the inflammatory infiltrate in bronchial biopsy specimens and clinical severity of asthma in patients treated with inhaled steroids. Thorax 51: 496–502

    PubMed  CAS  Google Scholar 

  195. Bradley BL, Azzawi M, Jacobson M et al (1991). Eosinophils, T-lymphocytes, mast cells, neutrophils, and macrophages in bronchial biopsy specimens from atopic subjects with asthma: comparison with biopsy specimens from atopic subjects without asthma and normal control subjects and relationship to bronchial hyperresponsiveness. J Allergy Clin Immunol 889: 661–674

    Google Scholar 

  196. Sur S, Crotty TB, Kephart GM et al (1993) Sudden onset fatal asthma — A distinct entity with few eosinophils and relatively more neutrophils in the airway submueosa? Am Rev Respir Dis 148: 713–719

    PubMed  CAS  Google Scholar 

  197. Fahy JV, Kim KW, Liu J et al (1995) Respiratory pathophysiological responses-prominent neutrophilic inflammation in sputum from subjects with asthma exacerbations. J Allergy Clin Immunol 95(4): 843–852

    PubMed  CAS  Google Scholar 

  198. Wenzel SE, Szefler SJ, Leung DYM et al (1997) Bronchoscopic evaluation of severe asthma, persistent inflammation associated with high dose glucocorticosteroids. Am J Respir Crit Care Med 156: 737–743

    PubMed  CAS  Google Scholar 

  199. Cox G (1995) Glucocorticosteroid treatment inhibits apoptosis in human neutrophils. J Immunol 154: 4719–4725

    PubMed  CAS  Google Scholar 

  200. Chanez P, Paradis A, Vignola M et al (1996) Changes in bronchial epithelium of steroid (GCs) dependent asthmatics. Am J Respir Crit Care Med 153: 212

    Google Scholar 

  201. Weiss KB, Gergen PJ, Hodgson TA (1992) An economic evaluation of asthma in the United States. N Engl J Med 326: 862–866

    PubMed  CAS  Google Scholar 

  202. Nizankowska E, Soja J, Pinis G et al (1995) Treatment of steroid-dependant bronchial asthma with cyclosporin. Eur Respir J 8: 1091–1099

    PubMed  CAS  Google Scholar 

  203. Corrigan CJ, Kay AB (1990) CD4+ T lymphocyte activation in acute severe asthma: relationship to disease severity. Am Rev Respir Dis 140: 970–977

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Basel AG

About this chapter

Cite this chapter

Lordan, J.L., Djukanović, R. (1999). Anti-Inflammatory Drugs in Asthma: The Pathophysiology of Asthma. In: Sampson, A.P., Church, M.K. (eds) Anti-Inflammatory Drugs in Asthma. Progress in Inflammation Research. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8751-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8751-9_1

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9757-0

  • Online ISBN: 978-3-0348-8751-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics