Skip to main content

Evolutionary perspectives of cytokines in pain

  • Chapter
Cytokines and Pain

Part of the book series: Progress in Inflammation Research ((PIR))

Abstract

It is clear that the ability of an animal to detect and react appropriately to an aversive stimulus is of fundamental importance to its survival. This ability is as important to invertebrates as it is to vertebrates, a fact that is underscored by behavioral evidence for the display of nociceptive behaviors in invertebrates (reviewed in [1, 2]. For example, locomotion away from a noxious stimulus has been observed in the simplest animals (see Fig. 1) including protozoans [3], flatworms [4] and jellyfish [5]. Anemones (Anthozoa) display relatively sophisticated, nociceptive behaviors that can be modified by aversive environmental stimuli [6, 7]. Anthozoa have among the simplest nervous systems in the animal kingdom and it has been postulated that the first functional nociceptive responses are likely to have occurred in this group. The nociceptive behaviors of the more advanced invertebrate, the marine mollusc Aplysia californica, and their modification by a variety of stimuli have been studied extensively over the last two decades. Aplysia display a variety of nociceptive behaviors in response to noxious mechanical or electrical stimulation including local body withdrawal, ink and opaline release, and escape locomotion [8]. The relative simplicity and accessibility of the Aplysia nervous system for intracellular recording make it a very attractive model system to understand neuronal correlations underlying these nociceptive behaviors and their modification. Consequently Aplysia has emerged as a useful model system to understand fundamental mechanisms underlying nociceptive plasticity and it will be the focus of this review. It has been suggested that general similarities between patterns of nociceptive behavior observed in Aplysia and more complex animals (e.g. rats and humans) represent common behavioral adaptions to ubiquitous selection pressures such as escape from a source of bodily injury and optimization of recuperation [2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kavaliers M (1988) Evolutionary and comparative aspects of nociception. Brain Res Bull 21: 923–931

    Article  PubMed  CAS  Google Scholar 

  2. Walters ET (1994) Injury-related behavior and neuronal plasticity: an evolutionary perspective on sensitization, hyperalgesia and analgesia. Int Rev Neurobiol 36: 325–427

    Article  PubMed  CAS  Google Scholar 

  3. Kung C, Chang S-Y, Satow Y, Van Houten J, Hansma H (1975) Genetic dissection of behavior in paramecium. Science 188: 898–904

    PubMed  CAS  Google Scholar 

  4. Corning WC, Kelly S (1973) Platyhelminths: the turbellarians. In: Corning WC, Dyal JA, Willows AOD (eds): Invertebrate learning: Protozoans through annelids. Plenum, New York, 171–224

    Chapter  Google Scholar 

  5. Donaldson S, Mackie GO, Roberts A (1980) Preliminary observations on escape swimming and giant neurons in Aglantha digitale (Hydromedusae:Trachylina). Can J Zool 58: 549–552

    Article  Google Scholar 

  6. Robson EA (1966) Swimming in actinaria. Symp Zool Soc Lond 16: 333–359

    Google Scholar 

  7. Ross DM (1968) Detachment of sea anemones by commensal hermit crabs and by mechanical and electrical stimulation. Nature 217: 380–381

    Article  Google Scholar 

  8. Walters ET, Erickson MT (1986) Directional control and the functional organization of defensive responses in Aplysia. J Comp Physiol A 159: 339–351

    CAS  Google Scholar 

  9. Walters ET Byrne JH, Carew TJ, Kandel ER (1983) Mechanoafferent neurons innervating the tail of Aplysia. I. Response properties and synaptic connections. J Neurophysiol 50: 1522–1542

    Google Scholar 

  10. Clatworthy AL, Walters ET (1993) Rapid amplification and facilitation of mechanosen-sory discharge in Aplysia by noxious stimulation. J Neurophysiol 70: 1181–1194

    PubMed  CAS  Google Scholar 

  11. Clatworthy AL, Walters ET (1993) Activity-dependent depression of mechanosensory discharge in Aplysia. J Neurophysiol 70: 1195–1209

    CAS  Google Scholar 

  12. Marcus EA, Nolen TG, Rankin CH, Carew TJ (1988) Behavioral dissociation of dishabituation, sensitization, and inhibition in Aplysia. Science 241: 210–212

    CAS  Google Scholar 

  13. Mackey SL, Glanzman DL, Small SA, Dyke AM, Kandel ER, Hawkins RD (1987) Tail shock produces inhibition as well as sensitization of the siphon-withdrawl reflex of Aplysia: possible behavioral role for presynaptic inhibition mediated by the peptide Phe-Met-Arg-Phe-NH2. Proc Nat Acad Sci 84: 8730–8734

    Article  PubMed  CAS  Google Scholar 

  14. Woolf CJ, Walters ET (1991) Common patterns of plasticity contributing to nociceptive sensitization in mammals and Aplysia. Trends in Neurosci 14: 74–78

    Article  CAS  Google Scholar 

  15. Illich PA, Walters ET (1997) Mechanosensory neurons innervating Aplysia siphon encode noxious stimuli and display nociceptive sensitization. J Neurosci 17: 459–469

    PubMed  CAS  Google Scholar 

  16. Price DD, Hull CD, Buchwald NA (1971) Intracellular responses of dorsal horn cells to cutaneous and sural nerve A and C fiber stimuli. Exp Neurol 33: 291–309

    Article  PubMed  CAS  Google Scholar 

  17. Woolf CJ, King AE (1987) Physiology and morphology of multireceptive neurons with c-afferent fibre inputs in the deep dorsal horn of the rat lumbar spinal cord. J Neurophysiol 58: 460–479

    PubMed  CAS  Google Scholar 

  18. Walters ET (1987a) Site specific sensitization of defensive reflexes in Aplysia: a simple model of long-term hyperalgesia. J Neurosci 7 (2): 400–407

    CAS  Google Scholar 

  19. Walters ET (1987b) Multiple sensory neuronal correlates of site-specific sensitization in Aplysia. J Neurosci 7: 408–417

    CAS  Google Scholar 

  20. Walters ET, Alizadeh H, Castro GA (1991) Similar neuronal alterations induced by axonal injury and learning in Aplysia. Science 253: 797–799

    CAS  Google Scholar 

  21. Clatworthy AL, Walters ET (1994) Comparative analysis of hyperexcitability and synaptic facilitation induced by nerve injury in cerebral and pleural mechanosensory neurons of Aplysia. J Exp Biol 190: 217–238

    PubMed  CAS  Google Scholar 

  22. Gunstream JD, Castro GA, Walters ET (1995) Retrograde transport of plasticity signals in Aplysia sensory neurons following axonal injury. J Neurosci 15: 439–448

    PubMed  CAS  Google Scholar 

  23. Yaksh TL, Yamamoto T, Myers RR. (1992) Pharmacology of nerve compression-evoked hyperesthesia. In: Willis WD Jr (ed): Hyperalgesia and allodynia. Raven Press, New York, 245–258

    Google Scholar 

  24. Watkins LR, Wiertelak EP, Geohler LE, Smith KP, Martin D, Maier SF (1994) Characterization of cytokine-induced hyperalgesia. Brain Res 654: 15–26

    Article  PubMed  CAS  Google Scholar 

  25. Fukuoka H, Kawatani M, Hisamitsu T, Takeshige C (1994) Cutaneous hyperalgesia induced by peripheral injection of interleukin 1β in the rat. Brain Res 657: 133–140

    Article  PubMed  CAS  Google Scholar 

  26. Jeanjean AP, Moussaoui SM, Maloteaux, JM, Laduron PM (1995) Interleukin 1B induces long-term increase of axonally transported opiate receptors and substance P. Neurosci 68: 151–157

    Article  CAS  Google Scholar 

  27. Stein C (1995) The control of pain in peripheral tissue by opioids. N Engl J Med 332: 1685–1690

    Article  PubMed  CAS  Google Scholar 

  28. Xiao WH, Wagner R, Myers RR, Sorkin LS (1996) TNFα in the peripheral receptive field or on the sciatic nerve trunk evokes activity in primary afferent fibres. Soc Neurosci Abstr 22: 1811

    Google Scholar 

  29. Illich PA, Martin D, Castro GA, Clatworthy AL (1997) TNF binding protein attenuates thermal hyperalgesia but not guarding behavior following loose ligation of rat sciatic nerve. Soc Neurosci Abstr 23: 166

    Google Scholar 

  30. DeLeo JA, Colburn RW, Nichols M, Malhotra A (1996) Interleukin-6-mediated hyperalgesia/allodynia and increased spinal IL-6 expression in a rat mononeuropathy model. J Interferon Cytokine Res 16: 695–700

    Article  PubMed  CAS  Google Scholar 

  31. Ratcliffe NA (1985) Invertebrate immunity — a primer for the non-specialist. Immunol Lett 10: 253–270

    Article  PubMed  CAS  Google Scholar 

  32. Clatworthy AL (1995) A simple systems approach to neural-immune communication. Comp Biochem Physiol 115(A): 1–10

    Google Scholar 

  33. Prowse RH, Tait NN (1969) In vitro phagocytosis by amebocytes from the hemolymph of Helix aspers (Muller) I. Evidence for opsonic factors in the serum. Immunol 17: 437–443

    CAS  Google Scholar 

  34. Renwrantz L, Stahmer A (1983) Opsonizing effect of an isolated hemolymph agglutinin and demonstration of lectin-like recognition molecules at the surface of hemocytes from Mytilus edulis. J Comp Physiol 149: 535–546

    CAS  Google Scholar 

  35. Mold C, DuClos TW, Nakayama S, Edwards KM, Gerwurz T (1982) C-reactive protein reactivity with complement and effects on phagocytosis. Ann NY Acad Sci 389: 251–261

    Article  PubMed  CAS  Google Scholar 

  36. Tripp MR (1970) Defense mechanisms of mollusks. J Reticuloendothel Soc 7:173–182

    PubMed  CAS  Google Scholar 

  37. Adema CM, van Deutekom-Mulder EC, van Der Knapp WPW, Meuleman EA, Sminia T (1991) Generation of oxygen radicals in hemocytes of the snail Lymnaea stagnalis in relation to the rate of phagocytosis. Dev Comp Immunol 15: 17–26

    Article  PubMed  CAS  Google Scholar 

  38. Leippe M, Renwrantz L (1988) Release of cytotoxic and agglutinating molecules by Mytilus hemocytes. Dev Comp Immunol 12: 297–308

    Article  PubMed  CAS  Google Scholar 

  39. Pipe RK (1990) Hydrolytic enzymes associated with the granular haemocytes of the marine mussel Mytilus edulis. Histochem J 22: 595–603

    Article  PubMed  CAS  Google Scholar 

  40. Pipe RK (1992) Generation of reactive oxygen metabolites by the haemocytes of the marine mussel Mytilus edulis. Dev Comp Immunol 16: 111–122

    Article  PubMed  CAS  Google Scholar 

  41. Ottaviani E, Paemen LR, Cadet P, Stefano GB (1993) Evidence for nitric oxide production and utilization as a bactericidal agent by invertebrate immunocytes. Eur J Pharmacol 248: 319–324

    PubMed  Google Scholar 

  42. Coggeshall RE, Fawcett DW (1964) The fine structure of the central nervous system of the leech, Hirudo medicinalis. J Neurophysiol 27: 229–289

    PubMed  CAS  Google Scholar 

  43. Morgese VJ, Elliott EJ, Muller KJ (1983) Microglial movement to sites of nerve lesion in the leech CNS. Brain Res 272: 166–170

    Article  PubMed  CAS  Google Scholar 

  44. Howes EA, Armett-Kibel C, Smith PJ (1993) A blood derived attachment factor enhances the in vitro growth of two glial cell types from the adult cockroach. Glia 8: 33–41

    Article  PubMed  CAS  Google Scholar 

  45. Sonetti D, Ottaviani E, Bianch F, Rodriguez M, Stefano ML, Scharrer B, Stefano GB (1994) Microglia in invertebrate ganglia. Proc Natl Acad Sci 91: 9180–9184

    Article  PubMed  CAS  Google Scholar 

  46. Barron KD (1995) The microglial cell. A historical review. J Neurological Sci 134: 57–68

    Article  Google Scholar 

  47. McGlade-McCulloh E, Morrissey AM, Norona F, Muller KJ (1989) Individual microglia move rapidly and directly to nerve lesions in the leech central nervous system. Proc Natl Acad Sci USA 86: 1093–1097

    Article  PubMed  CAS  Google Scholar 

  48. Von Bernhardi R, Muller KJ (1995) Repair of the central nervous system: lessons from lesions in leeches. J Neurobiol 27: 353–366

    Article  PubMed  CAS  Google Scholar 

  49. Ortenzi C, Miceli C, Bradshaw RA, Luporini P (1990) Identification and initial charaterization of an autocrine pheromone receptor in the protozoan ciliate Euplotes raikovi. J Cell Biol 111: 607–614

    Article  PubMed  CAS  Google Scholar 

  50. Clatworthy AL, Hughes TK, Budelmann BU, Castro GA, Walters ET (1994) Cytokines may act as signals for the injury-induced hyperexcitability in nociceptive sensory neurons of Aplysia. Soc Neurosci Abstr 20: 557

    Google Scholar 

  51. Hughes TK, Smith EM, Leung, MK, Stefano GB (1992) Immunoreactive cytokines in Mytilus edulis nervous and immune interactions. Acta Biologica Hungarica 43: 269–273

    PubMed  CAS  Google Scholar 

  52. Beck G, Habicht GS (1991) Primitive cytokines: harbingers of vertebrate defense. Immunol Today 12: 180

    Article  PubMed  CAS  Google Scholar 

  53. Beck G, Vasta GR, Marchalonis JJ, Habicht GS (1989) Characterization of interlukin-1 activity in tunicates. Comp Bioch Physiol 92 (B): 93–95

    CAS  Google Scholar 

  54. Beck G, O’Brien RF, Habicht GS, Stillman DL, Cooper EL, Raftos DA (1991) Invertebrate cytokines III: invertebrate interlukin-1 molecules stimulate phagocytosis by tunicate and echinoderm cells. Cellular Immunol 146: 284–299

    Article  Google Scholar 

  55. Raftos DA, Cooper EL, Habicht GS, Beck G (1991) Tunicate cytokines: tunicate cell proliferation stimulated by an endogenous hemolymph factor. Proc Natl Acad Sci USA 88: 9518

    Article  PubMed  CAS  Google Scholar 

  56. Raftos DA, Cooper EL, Stillman DL, Habicht G, Beck G (1992) Invertebrate cytokines II: Release of interleukin-1-like molecules from tunicate hemocytes stimulated with zymosan. Lymphokine Cytokine Res 11: 235–240

    PubMed  CAS  Google Scholar 

  57. Beck GB, Habicht GS (1996) Characterization of an IL-6-like molecule from an echinoderm (Asterias forbesi). Cytokine 8: 507–512

    Article  PubMed  CAS  Google Scholar 

  58. Beck G, O’Brien RF, Habicht GS (1989) Invertebrate cytokines: the phylogenetic emergence of interleukin-1. Bioessays 11: 62–67

    Article  PubMed  CAS  Google Scholar 

  59. Legac E, Vaugier GL, Bousquet F, Bajelan M, Leclerc M (1996) Primitive cytokines and cytokine receptors in invertebrates: the sea star Asterias rubens as a model of study. Scand J Immunol 44: 375–380

    Article  PubMed  CAS  Google Scholar 

  60. Sawada M, Hara N, Maeno T (1990) Extracellular tumor necrosis factor induces a decreased K conductance in an identified neuron of Aplysia kurodai. Neurosci Letts 115: 219–225

    Article  CAS  Google Scholar 

  61. Sawada M, Hara N, Maeno T (1991a) Ionic mechanism of the outward current induced by extracellular injection of interleukin 1 onto identified neurons of Aplysia. Brain Res 545: 248–256

    Article  CAS  Google Scholar 

  62. Szucs A, Stefano GB, Hughes TK, Rozsa KS, (1992) Modulation of voltage-activated ion currents on identified neurons of Helix pomatia by interleukin 1. Cell Mol Neurobiol 12: 429–438

    Article  PubMed  CAS  Google Scholar 

  63. Clatworthy AL, Castro GA, Budelmann BU, Walters ET (1994) Induction of a cellular defense reaction is accompanied by an increase in sensory neuron excitability in Aplysia. J Neurosci 14(5): 3263–3270

    CAS  Google Scholar 

  64. Clatworthy AL, Grose EF (1997) Immune cells release factors that modulate the excitability of nociceptive sensory neurons in Aplysia. Soc Neurosci Abstr 23: 166

    Google Scholar 

  65. Hughes TK, Smith EM, Barnett JA, Charles R, Stefano GB (1991) LPS stimulated invertebrate hemocytes: a role for immunoreactive TNF and IL-1. Dey Comp Immunol 15: 117–122

    Article  Google Scholar 

  66. Bennett GJ, Xie Y (1988) A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain 33: 87–107

    Article  PubMed  CAS  Google Scholar 

  67. Clatworthy AL, Illich PA, Castro GA, Walters ET (1995) Role of periaxonal inflammation in the development of thermal hyperalgesia and guarding behavior in a rat model of neuropathie pain. Neurosci Letts 184: 5–8

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Basel AG

About this chapter

Cite this chapter

Clatworthy, A.L. (1999). Evolutionary perspectives of cytokines in pain. In: Watkins, L.R., Maier, S.F. (eds) Cytokines and Pain. Progress in Inflammation Research. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8749-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8749-6_2

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9756-3

  • Online ISBN: 978-3-0348-8749-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics