Skip to main content

Part of the book series: Progress in Inflammation Research ((PIR))

  • 102 Accesses

Abstract

Introduction Atherosclerosis is a disease of the blood vessels and its associated clinical events are a significant cause of mortality and morbidity in the Western world today [1, 2]. The disease is regulated by a large number of different factors which partly explains why the aetiology and pathogenesis of atherosclerosis remain incompletely defined. Since the discovery of prostacyclin in the 1970s [3] and nitric oxide in the 1980s [4] considerable evidence has been amassed to indicate that these physiologic and pathophysiologic mediators contribute significantly to the regulation of atherosclerosis. The aim of this short review is to discuss the actions of these mediators in atherosclerosis, focusing on the enzymes regulating their synthesis, in particular their inducible isoforms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ross R (1993) Atherosclerosis: A defence mechanism gone awry. Am J Path 143: 987–1002

    PubMed  CAS  Google Scholar 

  2. O’Brien KD, Chait A (1994) The biology of the artery wall in atherogenesis. Med Clin North Am 78: 41–67

    PubMed  Google Scholar 

  3. Moncada S, Gryglewski R, Bunting S, Vane JR (1976) An enzyme isolated from arteries transforms prostaglandin endoperoxides to an unstable substance that inhibits platelet aggregation. Nature 263: 663–665

    Article  PubMed  CAS  Google Scholar 

  4. Palmer RMJ, Ferrige AG, Moncada S (1987) Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327: 524–526

    Article  PubMed  CAS  Google Scholar 

  5. Brown MS, Goldstein JL (1983) Lipoprotein metabolism in the macrophage: Implications for cholesterol deposition in atherosclerosis. Ann Rev Biochem 52: 223–250

    Article  PubMed  CAS  Google Scholar 

  6. Mitchinson MJ, Ball RY (1987) Macrophages and atherogenesis. Lancet 2: 146–148

    Article  PubMed  CAS  Google Scholar 

  7. Ross R, Glomset JA (1976) The pathogenesis of atherosclerosis. N Eng J Med 295: 369–377

    Article  CAS  Google Scholar 

  8. Ross R (1986) The pathogenesis of atherosclerosis — an update. N Eng J Med 314: 488–500

    Article  CAS  Google Scholar 

  9. Knowles RG, Moncada S (1995) Nitric oxide synthases in mammals. Biochem J 298: 249–258

    Google Scholar 

  10. Gross SS, Wolin MS (1995) Nitric oxide: Pathophysiological mechanisms. Ann Rev Physiol 57: 737–769

    Article  CAS  Google Scholar 

  11. Nussler AK, Billiar TR (1993) Inflammation, immunoregulation and inducible nitric oxide synthase. J Leuko Biol 54: 171–178

    PubMed  CAS  Google Scholar 

  12. Crow JP, Beckman JS (1995) Reactions between nitric oxide, superoxide and peroxyni-trite: Footprints of peroxynitrite in vivo. Adv Pharmacol 34: 17–44

    CAS  Google Scholar 

  13. Freeman BA (1994) Free radical chemistry of nitric oxide. Chest 105 (Suppl): {ss79S-80S}

    Google Scholar 

  14. Radomski MW, Palmer RMJ, Moncada S (1987) The anti-aggregating properties of vascular endothelium: interactions between prostacyclin and nitric oxide. Br J Pharmacol 92: 639–646

    Article  PubMed  CAS  Google Scholar 

  15. Radomski MW, Palmer RMJ, Moncada S (1987) Endogenous nitric oxide inhibits human platelet adhesion to vascular endothelium. Lancet 2: 1057–1058

    Article  PubMed  CAS  Google Scholar 

  16. Kubes P, Suzuki M, Granger DN (1991) Nitric oxide: An endogenous mediator leucocyte adhesion. PNAS 88: 4651–4655

    Article  PubMed  CAS  Google Scholar 

  17. Garg UC, Hassad A (1989) Nitric oxide-generating vasodilators and 8-bromo-cGMP inhibit mitogenesis and proliferation of cultured rat vascular smooth muscle cells. J Clin Invest 83: 1774–1777

    Article  PubMed  CAS  Google Scholar 

  18. Kawabata A (1996) Evidence that endogenous nitric oxide modulates plasma fibrinogen levels in the rat. Br J Pharmacol 117: 236–237

    Article  PubMed  CAS  Google Scholar 

  19. Khan BV, Harrison DG, Olbrych MT, Alexander RW, Medford RM (1996) Nitric oxide regulates vascular cell adhesion molecule 1 gene expression and redox-sensitive transcriptional events in human vascular endothelial cells. PNAS 93: 9114–9119

    Article  PubMed  CAS  Google Scholar 

  20. Hogg N, Kalyanaraman B, Joseph J, Struck A, Parthasarathy S (1993) Inhibition of low-density lipoprotein oxidation by nitric oxide. Potential role in atherogenesis. FEBS Lett 334: 170–174

    Article  PubMed  CAS  Google Scholar 

  21. Forstermann U, Mugge A, Alheid U, Haverich A, Frolich JC (1988) Selective attenuation of endothelium-mediated vasodilation in human atherosclerotic arteries. Circ Res 62: 185–190

    Article  PubMed  CAS  Google Scholar 

  22. Chester AH, O’Neil GS, Moncada S, Tadjkarimi S, Yacoub MH (1991) Low basal and stimulated relaese of nitric oxide in atherosclerotic epicardial coronary arteries. Lancet 336: 897–900

    Article  Google Scholar 

  23. Loskove JA, Frishman WH (1995) Nitric oxide donors in the treatment of cardiovascular and pulmonary diseases. Am Heart J 129: 604–613

    Article  PubMed  CAS  Google Scholar 

  24. Drexler H, Zeiher AM, Meinzer K, Just H (1991) Correction of endothelial dysfunction in coronary microcirculation of hypercholesterolaemic patients by L-arginine. Lancet 338: 1546–1550

    Article  PubMed  CAS  Google Scholar 

  25. Cooke JP, Andon NA, Girerd X, Hirsch A, Craeger MA (1991) L-arginine restores cholinergic relaxation of hypercholesterolaemic rabbit throacic aorta. Circulation 83: 1057–1062

    Article  PubMed  CAS  Google Scholar 

  26. Celermajer DS, Adams MR, Clarkson P, Robinson J, McCredie R, Donald A, Deanfield JE (1996) Passive smoking and impaired endothelium-dependent arterial dilatation in healthy young adults. N Eng J Med 334: 150–154

    Article  CAS  Google Scholar 

  27. Buttery LDK, Chester AH, Springall DR, Borland JAA, Michel T, Yacoub MH, Polak JM (1996) Explanted vein grafts with an intact endothelium demonstrate reduced focal expression of endothelial NO synthase specific to atherosclerotic sites. J Path 179: 197–203

    Article  PubMed  CAS  Google Scholar 

  28. Buttery LDK, Polak JM (1995) Localization of nitric oxide synthase: alterations in disease. Curr Diag Path 2: 111–121

    Article  Google Scholar 

  29. Liao JK, Shin WS, Lee WY, Clark SL (1995) Oxidized low-density lipoprotein decreases the expression of endothelial NO synthase. J Biol Chem 270: 391–324

    Google Scholar 

  30. Libby P, Hansson GK (1991) Involvement of the immune system in human atherogene-sis: Current knowledge and unanswered questions. Lab Invest 64: 5–14

    PubMed  CAS  Google Scholar 

  31. Buttery LDK, Springall DR, Chester AH, Evans TJ, Parums, Standfield N, Yacoub MH, Polak JM (1996) Inducible NO synthase is present within atherosclerotic lesions and promotes the formation and activity of peroxynitrite (1996) Lab Invest 75: 76–78

    Google Scholar 

  32. Darley-Usmar VM, Hogg N, O’Leary VJ, Tsai M (1992) The simultaneous generation of superoxide and nitric oxide can initaite lipid peroxidation in human low-density lipoprotein. Free Rad Res Comm 17: 19–20

    Article  Google Scholar 

  33. Graham A, Hogg N, Kalyanaraman B, O’Leary VJ, Darley-Usmar V, Moncada S (1993) Peroxynitrite modification of low density lipoprotein leads to recognition by the macrophage scavenger receptor. FEES Lett 330: 181–185

    Article  CAS  Google Scholar 

  34. White CR, Broack TA, Chang LY, Crapo J, Briscoe P, Ku D, Bradley WA, Gianturco SH, Gore J, Freeman BA, Tarpey MM (1994) Superoxide and peroxynitrite in atherosclerosis. FNAS 91: 1044–1048

    Article  CAS  Google Scholar 

  35. Moro MA, Darley-Usmar VM, Goodwin DA, Read NG, Zamora-Pino R, Feelisch M, Radomski M, Moncada S (1994) Paradoxical fate and biological action of peroxynitrite on human platelets. FNAS 91: 6702–6706

    Article  CAS  Google Scholar 

  36. Kaur H, Halliwell B (1994) Evidence for nitric-oxide mediated oxidative damage in chronic inflammation-Nitrotyrosine in serum and synovial fliud from rheumatoid patients. FEES Lett 350: 9–12

    Article  CAS  Google Scholar 

  37. Haddad IY, Pataki G, Hu P, Galhani C, Beckman JS, Mataon S (1994) Quantification of nitrotyrsosine levels in lung sections of patients and animals with acute lung injury. J Clin Invest 94: 2407–2413

    Article  PubMed  CAS  Google Scholar 

  38. Beckman JS, Ye YZ, Anderson PG, Chen J, Accavitti MA, Tarpey MM, White CR (1994) Extensive nitration of protein tyrosine residues in human atherosclerosis detected by immunohistochemistry. Biol Chem-Hoppe Seyer 375: 81–88

    Article  Google Scholar 

  39. Gow A, Duran D, Malcolm S, Ischiropoulos H (1996) Effects of peroxynitrite-induced protein modifications on tyrosine phosphorylation and degradation. FEB S Lett 385: 63–66

    Article  CAS  Google Scholar 

  40. Gruentzig AR, Myler RK, Hanna EH, Turina MI (1977) Restenosis after balloon angioplasty. Circulation 84 (Suppl2): 1155–56

    Google Scholar 

  41. Levy, RI, Mock MB, Willman VL, Passamani ER, Fromer PL (1981) Percutaneous coronary angioplasty — a status report. N Eng J Med 305: 399–400

    Article  CAS  Google Scholar 

  42. Nobuyoshi M, Kimura T, Ohishi H, Horiuchi H, Nosaka H, Hamasaki N, Yoki H, Kim K (1991) Restenosis after percutaneous transuluminal angioplasty: Pathologic observations in 20 patients. J Am Coll Cardiol 17: 433–440

    Article  PubMed  CAS  Google Scholar 

  43. Wilcox JN (1993) Molecular biology: Insight into the causes and prevention of restenosis after arterial intervention. J Am Coll Cardiol 72: 88E–95E

    CAS  Google Scholar 

  44. Douglas SA, Vickery-Clarke LM, Ohlstein EH (1994) Functional evidence that balloon angioplasty results in transient nitric oxide synthase induction. Eur J Pharmacol 255: 81–89

    Article  PubMed  CAS  Google Scholar 

  45. Schini VB, Durante DL, Elizondo E, Scott-Burden T, Janquero DL, Schafer AI, Vanhoutte PM (1992) The induction of nitric oxide synthase activity is inhibited by TGF-b1, PDG-FAB, and PDGFBB in vascular smooth muscle cells. Eur J Pharmacol 216: 379–383

    Article  PubMed  CAS  Google Scholar 

  46. Schini VB, Catovsky S, Durante DL, Scott-Burden T, Schäfer AI, Vanhoutte PM (1993) Thrombin inhibits induction of nitric oxide synthase in vascular smooth muscle cells. Am J Physiol 264: H611–H616

    PubMed  CAS  Google Scholar 

  47. Nabel EG, Plaitz, Boyce FM, Tranley JC. Nabel GC (1989) Recombinant gene expression in vivo within endothelial cells of the arterial wall. Science 244: 1342–1344

    Article  PubMed  CAS  Google Scholar 

  48. Von der Leyen HE, Gibbons GH, Moishita R, Lewis NP, Zhang L, Nakajima M, Kane-da Y, Cooke JP, Dzau VJ (1995) Gene therapy inhibiting neointimal vascular lesion: In vivo transfer of endothelial cell nitric oxide synthase gene. PNAS 92: 1137–1141

    Article  PubMed  Google Scholar 

  49. Tzeng E, Shears LL, Lotze MT, Billiar TR (1996) Gene therapy. Curr Probl Surg 33: 961–1041

    Article  PubMed  CAS  Google Scholar 

  50. Shears LL, Kawaharada N, Tzeng E, Billiar TR, Watkins SC, Kovesdi I, Lizonova A, Pham SM (1997) Inducible nitric oxide synthase supppresses the developmeent of allograft arteriosclerosis. J Clin Invest 100: 2035–2042

    Article  PubMed  CAS  Google Scholar 

  51. Mugge A, Ewell JH, Peterson TE, Hofmeyer TG, Heistad DD, Harrison DG (1991) Chronic treatment with polyethylene-glycolated superoxide dismutase partially restores endothelium-dependent vascular relaxations in cholesterol-fed rabbits. Circ Res 69: 1293–1300

    Article  PubMed  CAS  Google Scholar 

  52. Keaney JJr, Vita JA (1995) Atherosclerosis, oxidative stress, and antioxidant protection in endothelium-derived relaxing factor action. Progress in Cardiovasc Dis 33: 129–154

    Article  Google Scholar 

  53. Wu KK (1995) Inducible cyclooxygenase and nitric oxide synthase. Adv Pharmacol 33: 179–207

    Article  PubMed  CAS  Google Scholar 

  54. Bunting S, Gryglewski R, Moncada S, Vane JR (1976) Arterial walls generate from prostaglandin endoperoxides a substance (prostaglandin x) which relaxes strips of mesenteric and coeliac arreries and inhibits platelet aggregation. Prostaglandins 12: 897–913

    Article  PubMed  CAS  Google Scholar 

  55. Moncada S, Vane JR (1979) Pharmacology and endogenous roles of prostaglandin endoperoxides, thromboxane A2 and prostacyclin. Pharmacol Rev 30: 293–331

    Google Scholar 

  56. Dembinska-Kiec A, Gryglewska T, Zmuda A, Gryglewski RJ (1977) The generation of prostacyclin by arteries and by the coronary vascular bed is reduced in experimental atherosclerosis in rabbit. Prostaglandins 14: 1025–1034

    Article  PubMed  CAS  Google Scholar 

  57. D’Angelo V, Villa S, Musliwiec M, Donati MB, De Gaetano G (1978) Defective fibrinolytic and prostacyclin like activity in human atheromatous plaques. Thromb Haemo-stasis 39: 535–536

    Google Scholar 

  58. Tremoli E, Socini A, Petroni A, Galli C (1982) Increased platelet aggregability is associated with increased prostacyclin production by vessel walls in hypercholesterolaemic rabbits. Prostaglandins 24: 397–404

    Article  PubMed  CAS  Google Scholar 

  59. Fitzgerald GA, Smith B, Pedersen AK, Brash AR (1984) Increased prostacyclin biosynthesis in patients with severe atherosclerosis and platelet activation. N Eng J Med 310: 1065–1068

    Article  CAS  Google Scholar 

  60. Baker CSR, Hall RJC, Evans TJ, Pomerance A, Maclouf J, Creminon C, Yacoub MM, Polak JM (1998) Cyclooxygenase-2 is widely expressed in atherosclerotic lesions affecting native and transplanted human coronary arteries and co-localizes with inducible nitric oxide synthase and nitrotyrosine particularly in macrophages. Arterios der Thromb Vasc Biol in press

    Google Scholar 

  61. Zembowicz A, Jones SL, Wu KK (1995) Induction of cyclooxygenase 2 in human umbilical vein endothelial cells by lysophosphatidylcholine. J Clin Invest 96: 1688

    Article  PubMed  CAS  Google Scholar 

  62. Topper JN, Cai J, Falb D, Gimbrone MA Jr (1996) Identification of vascular endothelial genes differentially responsive to fluid mechanical stimuli: Cyclooxygenase-2, manganese superoxide dismutase, and endothelial cell nitric oxide synthase are selectively up-regulated by steady laminar shear stress. PNAS 93: 10417–10422

    Article  PubMed  CAS  Google Scholar 

  63. Crutchley DJ, Conanan LB, Maynard JR (1982) Stimulation of fibrinolytic activity in human skin fibroblasts by prostaglandins E1, E2 and I2. J Pharm Exp Therap 222: 544–549

    CAS  Google Scholar 

  64. Dembinska-Kiec A, Kostka-Trabska E, Gryglewski RJ (1982) Effect of prostacyclin on fibronolytic activity in patients with arteriosclerosis obliteran. Thromb Haemost 47: 90

    Google Scholar 

  65. Szczeklik A, Kopec M, Sladek K (1983) Prostacyclin and the fibrinolytic system in ischaemic vascular disease. Thromb Res 29: 655–660

    Article  PubMed  CAS  Google Scholar 

  66. Kadish J (1995) Endothelium, fibrinolysis, cardiac risk factors and prostaglandins: a unified model of atherogenesis. Med Hypoth 45: 205–213

    Article  CAS  Google Scholar 

  67. Braun M, Sarbia M, Kienbaum P, Hohlfels T, Weber A, Schror K (1992) Anti-athero-sclerotic properties of oral cicaprost in hypercholesterolaemic rabbits. Agents and Actions 37: 282–288

    PubMed  CAS  Google Scholar 

  68. Asada Y, Kisanuki A, Hatakeyama K, Takahama S, Koyama T, Kurozumi S, Sumiyoshi A (1994) Inhibitory effects of prostacyclin analogue, TFC-132, on aortic neointimal thickening in vivo and smooth muscle cell proliferation in vitro. Prostaglandin Leukot Essent Fatty Acids 51: 245–248

    Article  CAS  Google Scholar 

  69. Sinzinger H, Rogatti W (1994) Prostaglandins and arterial wall lipid metabolism in vitro, ex vivo and in vivo radiographic studies. J Physiol Pharmacol 45: 27–40

    PubMed  Google Scholar 

  70. Steering Committe of the Physician’s Health Study Research Group (1989) Final report on the aspirin component of the ongoing Physician’s Health Study. N Eng J Med 321: 129

    Article  Google Scholar 

  71. Salvemini D, Misko TP, Masferrer JL, Sichert K, Currie MG, Needleman (1993) Nitric oxide activates cyclooxygenase enzymes. PNAS 90: 7240–7244

    Article  PubMed  CAS  Google Scholar 

  72. Salvemini D, Currie MG, Mollace V (1996) Nitric oxide mediated cyclooxygenase activation. A key event in the antiplatelet effects of nitrosovasodilators. J Clin Invest 97: 2562–2568

    Article  PubMed  CAS  Google Scholar 

  73. Hajjar DP, Lander HM, Pearce FS, Upmacis RK, Pomerantz KB (1995) Nitric oxide enhances prostaglandin H synthase activity by a heme-independent mechanism: evidence implicating nitrosothiols. J Am Chem Soc 117: 3340–3346

    Article  CAS  Google Scholar 

  74. Mitchell JA, Larkin S, Williams TJ (1995) Cyclooxygenase 2: Regulation and relevance in inflammation. Biochem Pharamcol 50: 1535–1542

    Article  CAS  Google Scholar 

  75. Salvemini D, Masferrer JL (1996) Interactions of nitric oxide with cyclooxygenase: In vitro, ex vivo and in vivo studies. Met Enzymol 269: 12–25

    Article  CAS  Google Scholar 

  76. Hughes FJ, Buttery LDK, Hukkanen MVJ, O’Donnell A, Polak JM (1998) Cytokine-induced prostaglandin E2 synthesis and cyclo-oxygenase-2 activity are regulated both by a nitric oxide-dependent and-independent mechanism in rat osteoblasts in vitro. J Biol Chem; in press

    Google Scholar 

  77. Zou M, Martin C, Ullrich V (1997) Tyrosine nitration as a mechanism of selective inac-tivation of prostacyclin synthase by peroxynitrite. Biol Chem 378: 707–713

    Article  PubMed  CAS  Google Scholar 

  78. Lynch SM, Morrow JD, Roberts LJ II, Frei B (1994) Formation of non-cyclooxygenase-derived prosatnoids (F2-isoprostanes) plasma and low density lipoprotein exposed to oxidative stress in vitro. J Clin Invest 93: 998–1004

    Article  CAS  Google Scholar 

  79. Moore KP, Darley-Usmar V, Morrow J, Roberts LJ (1995) Formation of F2-isoprostanes during oxidation of human low-density lipoprotein and plasma peroxynitrite. Circ Res 77: 335–341

    Article  PubMed  CAS  Google Scholar 

  80. Milano S, Arcoleo F, Dieli M, D’Agostino R, D’Agostino P, De Nucci G, Cillari E (1995) Prostaglandin E2 regulates inducible nitric oxide synthase in the murine macrophage cell Une J774. Prostaglandins 49: 105–115

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Basel AG

About this chapter

Cite this chapter

Buttery, L.D.K., Polak, J.M. (1999). iNOS and COX-2 in atherosclerosis. In: Willoughby, D.A., Tomlinson, A. (eds) Inducible Enzymes in the Inflammatory Response. Progress in Inflammation Research. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8747-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8747-2_5

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9755-6

  • Online ISBN: 978-3-0348-8747-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics