Skip to main content

Optimal Eigenvalues for Some Laplacians and Schrödinger Operators Depending on Curvature

  • Conference paper
Mathematical Results in Quantum Mechanics

Part of the book series: Operator Theory Advances and Applications ((OT,volume 108))

Abstract

We consider Laplace operators and Schrödinger operators with potentials containing curvature on certain regions of nontrivial topology, especially closed curves, annular domains, and shells. Dirichlet boundary conditions are imposed on any boundaries. Under suitable assumptions we prove that the fundamental eigenvalue is maximized when the geometry is round.

We also comment on the use of coordinate transformations for these operators and mention some open problems.

Work supported by GA AS No.1048801

Work supported by N.S.F. grant DMS-9622730

Work supported by N.S.F. grant DMS-9500840

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nicholas D. Alikakos and Giorgio Fusco, The spectrum of the Cahn-Hilliard operator for generic interface in higher space dimensions, Indiana U. Math. J. 4 1993, pp. 637–674.

    Article  MathSciNet  Google Scholar 

  2. Mark S. Ashbaugh and Rafael D. Benguria, Isoperimetric inequalities for eigenvalue ratios, pp. 1–36 in: A. Alvino, E. Fabes, and G. Talenti, eds., Partial Differential Equations of Elliptic Type, Cortona, 1992. Cambridge: Cambridge University Press, 1994.

    Google Scholar 

  3. Catherine Bandle, Isoperimetric inequalities and applications, Pitman Monographs and Studies in Mathematics 7. Boston: Pitman, 1980.

    Google Scholar 

  4. Tommaso Boggio, Sull’equazione del moto vibratorio delle membrane elastiche, Rend. Accad. Lincei, sci. fis.ser. 5 16(1907)386–393.

    MATH  Google Scholar 

  5. R.C.T. Costa, Quantum mechanics of a constrained particle, Phys Rev. A23 (1981) 1982–1987 (and later articles).

    Article  MathSciNet  Google Scholar 

  6. E.B. Davies, A review of Hardy inequalities, preprint 1998 available electronically as http://xxx.lanl.gov/abs/math.SP/9809159

    Google Scholar 

  7. Pierre Duclos and Pavel Exner, Curvature-induced bound states in quantum waveguides in two and three dimensions, Rev. Math. Phys. 7(1995)73–102.

    Article  MathSciNet  MATH  Google Scholar 

  8. Pavel Exner and Pavel ŠSeba., Bound states in curved quantum waveguides, J. Math. Phys. 30(1989)2574–2580.

    Article  MathSciNet  MATH  Google Scholar 

  9. G. Faber, Beweis, dass unter allen homogenen Membranen von gleicher Fläche und gleicher Spannung die kreisförmige den tiefsten Grundton gibt, Sitzungsber. der mathematisch-physikalischen Klasse der Bayer. Akad. der Wiss. zu München (1923)169–172.

    Google Scholar 

  10. Evans M. Harrell II, On the second eigenvalue of the Laplace operator penalized by curvature, Journal of Differential Geometry and Applications 6 (1996)397–400.

    Article  MATH  Google Scholar 

  11. Evans M., Harrell ll, Pawel Kröger, and Kazuhiro Kurata, work in progress.

    Google Scholar 

  12. Evans M. Harrell II and Michael Loss, On the Laplace operator penalized by mean curvature, Commun. Math. Physics 195(1998)643–650.

    Article  MathSciNet  MATH  Google Scholar 

  13. Joseph Hersch, Quatre propriétés isopérimetriques de membranes sphériques homogènes, C.R. Acad. Sci. Paris, sér A-B 270, 1970, pp. A1645–1648.

    MathSciNet  Google Scholar 

  14. Joseph Hersch, Isoperimetric monotonicity: Some properties and conjectures (connections between isoperimetric inequalities), SIAM Review 30 (1988)551–577.

    Article  MathSciNet  MATH  Google Scholar 

  15. D. Hilbert & S. Cohn-Vossen. Geometry and the Imagination. New York: Chelsea, 1952.

    Google Scholar 

  16. ] Hermann Karcher, Riemannian comparison constructions, pp. 170–222 in: S. Chern, editor, Global Differential Geometry, Studies in Mathematics 27. Washington: Math. Assoc. Amer., 1989.

    Google Scholar 

  17. E. Krahn, Über Minimaleigenschaften der Kugel in drei und mehr Dimensionen, Acta Comm. Univ. Tartu (Dorpat) A9(1926)1–44.

    Google Scholar 

  18. L.E. Payne and H.F. Weinberger, Some isoperimetric inequalities for membrane frequencies and torsional rigidity, J. Math. Anal. Appl. 2(1961) 210–216.

    Article  MathSciNet  MATH  Google Scholar 

  19. M. Reed and B. Simon, Methods of Modern Mathematical Physics, IV: Analysis of Operators. New York: Academic Press, 1978.

    MATH  Google Scholar 

  20. Michael Spivak, A Comprehensive Introduction to Differential Geometry, IV, second edition. Houston: Publish or Perish, 1979.

    Google Scholar 

  21. L.A. Santalo, Integral Geometry, pp.303–350, in: S. Chern, ed., Global Differential Geometry, Studies in Mathematics 27. Washington: Math. Assoc. Amer., 1989.

    Google Scholar 

  22. H.F. Weinberger, An isoperimetric inequality for the n—dimensional free membrane problem, J. Rat. Mech. Anal. 5(1956)633–636.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Basel AG

About this paper

Cite this paper

Exner, P., Harrell, E.M., Loss, M. (1999). Optimal Eigenvalues for Some Laplacians and Schrödinger Operators Depending on Curvature. In: Dittrich, J., Exner, P., Tater, M. (eds) Mathematical Results in Quantum Mechanics. Operator Theory Advances and Applications, vol 108. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8745-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8745-8_4

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9754-9

  • Online ISBN: 978-3-0348-8745-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics