Skip to main content

Quantum dots

A survey of rigorous results

  • Conference paper
Mathematical Results in Quantum Mechanics

Part of the book series: Operator Theory Advances and Applications ((OT,volume 108))

Abstract

Modern semiconductor technology has in recent years made it possible to fabricate ultrasmall structures that confine electrons on scales comparable to their de Broglie wavelength. If the confinement is only in one spatial direction such systems are called quantum wells. In quantum wires the electrons can move freely in one dimension but are restricted in the other two. Structures that restrict the motion of the electrons in all directions are called quantum dots. The number of electrons, N,in a quantum dot can range from zero to several thousand. The confinement length scales R 1, R 2, R 3 can be different in the three spatial dimensions, but typically R 3R 1R 2≈ 100 nm. In models of such dots R 3 is often taken to be strictly zero and the confinement in the other two dimensions is described by a potential V with \(V\left( x \right)\to\infty for |x|\to\infty,x =\left( {{x^2},{x^2}} \right) \in {R^2}.\) A parabolic poten-tial, \(V = \frac{1}{2}\omega {\left| x \right|^2}\) is often used as a realistic and at the same time computationally convenient approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Chakraborty, Physics of the Artificial Atoms: Quantum Dots in a Magnetic Field, Comments Cond. Mat. Phys. 16, 35–68 (1992)

    Google Scholar 

  2. M.A. Kastner, Artificial atoms, Phys. Today 46, 24–31 (1993)

    Article  Google Scholar 

  3. D. Heitmann and J. Kotthaus, The spectroscopy of quantum dot arrays, Phys. Today 46, 56–63 (1993)

    Article  Google Scholar 

  4. N. F. Johnson, Quantum dots: few-body, low dimensional systems, J. Phys.: Condens. Matter 7, 965–989 (1995)

    Article  Google Scholar 

  5. M.A. Kastner, Mesoscopic Physics with Artificial Atoms, Comments Cond. Mat. Phys. 17, 349–360 (1996)

    Google Scholar 

  6. R.C. Ashori, Electrons on artificial atoms, Nature 379, 413–419 (1996)

    Article  Google Scholar 

  7. J. H. Jefferson and W. Häusler, Quantum dots and artificial atoms, Molecular Physics Reports, 17 81–103 (1997)

    Google Scholar 

  8. L. Jacak, P. Hawrylak, A. Wójs, Quantum Dots, Springer, Berlin etc., 1998

    Google Scholar 

  9. E.H. Lieb, J.P. Solovej and J. Yngvason, The Ground States of Large Quantum Dots in Magnetic Fields, Phys. Rev. B 51, 10646–10665 (1995)

    Article  Google Scholar 

  10. E.H. Lieb, J.P. Solovej and J. Yngvason, Quantum Dots, in: Proceedings of the Conference on Partial Differential Equations and Mathematical Physics, University of Alabama, Birmingham, 1994, I. Knowles, ed., pp. 157–172, International Press 1995

    Google Scholar 

  11. P.L. McEuen, E.B. Foxman, J. Kinaret, U. Meirav, M.A. Kastner, N.S. Wingreen and S.J. Wind, Self consistent addition spectrum of a Coulomb island in the quantum Hall regime, Phys. Rev. B 45, 11419–11422 (1992)

    Article  Google Scholar 

  12. C. W. J. Beenakker, Theory of Coulomb-blockade oscillations in the conductance of a quantum dot, Phys. Rev. B 44 1646–1656 (1991)

    Article  Google Scholar 

  13. L. P. Kouwenhouven, T.H. Osterkamp, M. W. S. Danoesastro, M. Eto, D. G. Austing, T. Honda and S. Tarucha, Excitation Spectra of Circular Few-Electron Quantum Dots, Science 278 1788–1792 (1997)

    Article  Google Scholar 

  14. U. Merkt, Far-infrared spectroscopy of quantum dots, Physica B 189, 165–175 (1993)

    Article  Google Scholar 

  15. D. Heitmann, K. Bollweg, V. Gudmundsson, T. Kurth, S. P. Riege, Far-infrared spectroscopy of quantum vires and dots, breaking Kohn’s theorem, Physica E 1, 204–210 (1997)

    Article  Google Scholar 

  16. N. B. Zhintev, R. C. Ashoori, L. N. Pfeiffer and K. W. West, Periodic and Aperiodic Bunching in the Addition Spectra of Quantum Dots, Phys. Rev. Lett. 79, 2308–2311 (1997)

    Article  Google Scholar 

  17. V. Fock, Bemerkung zur Quantelung des harmonischen Oszillators in Magnetfeld, Z. Phys. 47, 446–448 (1928)

    Article  MATH  Google Scholar 

  18. C.G. DarwinThe Diamagnetism of the Free Electron, Proc. Cambr. Philos. Soc. 27, 86–90 (1930)

    Article  Google Scholar 

  19. W. Kohn, Cyclotron Resonance and the de Haas-van Alphen Oscillations of an Interacting Electron Gas, Phys. Rev. 123, 1242–1244 (1961)

    Article  MATH  Google Scholar 

  20. A. O. Govorov and A. V. Chaplik, Magnetoabsorption at quantum points, JETP Lett. 52, 31–33 (1990)

    Google Scholar 

  21. A. H. MacDonald, S. R. Yang, M. D. Johnson, Quantum dots in strong magnetic fields: Stability criteria for the maximum density droplet, Australian J. Phys. 46, 345 (1993)

    Google Scholar 

  22. S. E. Koonin and H. M. Mueller, Phase-Transitions in Quantum Dots, Phys. Rev. B 54, 14532–14539 (1996)

    Article  Google Scholar 

  23. M. Ferconi and G. Vignale, Density functional theory of the phase diagram of maximum density droplets in two dimensional quantum dots in a magnetic field, Phys. Rev. B 56, 12108–12111 (1997)

    Article  Google Scholar 

  24. T. H. Osterkamp, J. W. Janssen, L. P. Kouwenhouven, D. G. Austing, T. Honda and S. Tarucha, Stability of the maximum density drop in quantum dots at high magnetic fields, Preprint, http://vortex.tn.tudelft.nl/mensen/leok/papers (1998)

  25. M. Taut, Two electrons in a homogeneous magnetic field: Particular analytical solutions, J. Phys. A 27, 1045–1055; Corrigendum 27, 4723–4724 (1994)

    Article  MathSciNet  Google Scholar 

  26. L. Quiroga, D. R. Ardila and N. F. Johnson, Spatial Correlation of Quantum Dot Electrons in a Magnetic Field, Solid State Comm. 86, 775–780 (1993)

    Article  Google Scholar 

  27. N. F. Johnson and M. C. Payne, Exactly Solvable Models of Interacting Particles in a Quantum Dot, Phys. Rev. Lett. 67, 1157–1160 (1991)

    Article  Google Scholar 

  28. V. Shikin, S. Nazin, D. Heitmann and T. Demel, Dynamical response of quantum dots, Phys. Rev. B 43, 11903–11907 (1991)

    Article  Google Scholar 

  29. P.L. McEuen, N.S. Wingreen, E.B. Foxman, J. Kinaret, U. Meirav, M.A. Kastner, and Y. Meir, Coulomb interactions and the energy-level spectrum of a small electron gas, Physica B 189, 70–79 (1993)

    Article  Google Scholar 

  30. E.H. Lieb and M. Loss, unpublished section of a book on stability of matter.

    Google Scholar 

  31. N.C. van der Vaart, M.P. de Ruyter van Steveninck, L.P. Kouwenhoven, A.T. Johnson, Y.V. Nazarov, and C.J.P.M. Harmans, Time-Resolved Tunneling of Single Electrons between Landau Levels in a Quantum Dot, Phys. Rev. Lett. 73, 320–323 (1994)

    Article  Google Scholar 

  32. E.H. Lieb, J.P. Solovej and J. Yngvason, Asymptotics of Heavy Atoms in High Magnetic Fields: I. Lowest Landau Band Regions, Commun. Pure Appl. Math. 47, 513–591 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  33. E.H. Lieb, J.P. Solovej and J. Yngvason, Asymptotics of Heavy Atoms in High Magnetic Fields: II. Semiclassical Regions, Commun. Math. Phys 161, 77–124 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  34. E.H. Lieb, A Variational Principle for Many-Fermion Systems, Phys. Rev. Lett. 46, 457–459; Erratum 47, 69 (1981)

    Article  MathSciNet  Google Scholar 

  35. E.H. Lieb and H.-T. Yau, The stability and instability of relativistic matter, Commun. Math. Phys. 118, 177–213 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  36. L. Erdös and J.P. Solovej, Semiclassical eigenvalue estimates for the Pauli operator with strong non-homogeneous magnetic fields. I. Non-asymptotic Lieb Thirring estimates, Duke Math. J., to appear

    Google Scholar 

  37. L. Erdös and J.P. Solovej, Semiclassical eigenvalue estimates for the Pauli operator with strong non-homogeneous magnetic fields. II. Leading order asymptotic estimates, Comm Math. Phys. 188, 599–656 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  38. E. H. Lieb, A lower bound for Coulomb energies, Phys. Lett. 70 A, 444–446 (1979)

    Article  MathSciNet  Google Scholar 

  39. V. Bach, Error Bound for the Hartree-Fock Energy of Atoms and Molecules, Commun Math. Phys. 147, 527–548 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  40. S. R. Eric Yang, A. H. MacDonald and M. D. Johnson, Addition Spectra of Quantum Dots in Strong Magnetic Fields, Phys. Rev. Lett. 71, 3194–3197 (1993)

    Article  Google Scholar 

  41. M. Wagner, U. Merkt and A. V. Chaplik, Spin-singlet-spin-triplet oscillations in quantum dots, Phys. Rev. B 45, 1951–1954 (1992)

    Article  Google Scholar 

  42. D. Pfannkuche, V. Gudmundsson and P. A. Maksym, Comparison of a Hartree, a Hartree-Fock, and an exact treatment of quantum dot helium, Phys. Rev. B 47, 2244–2250 (1993)

    Article  Google Scholar 

  43. D. Pfannkuche and S. E. Ulloa, Selection Rules for Transport Spectroscopy of Few-Electron Quantum Dots, Phys. Rev. Lett. 74, 1194–1197 (1995)

    Article  Google Scholar 

  44. L. Meza-Montes, S. E. Ulloa and D. Pfannkuche, Electron interactions, classical instability, and level statistics in quantum dots, Physica E 1, 274–280 (1997)

    Article  Google Scholar 

  45. M. Eto, Electronic Structures of Few Electrons in a Quantum Dot under Magnetic Fields, Jpn. J. Appl. Phys. 36, 3924–3927 (1997)

    Article  Google Scholar 

  46. E. Anisimovas and A. Matulis, Energy Spectra of Few-Electron Quantum Dots, Jour. Phys. Cond. Mat. 10, 601–615 (1998)

    Article  Google Scholar 

  47. M. Dineykhan and R. G. Nazmitdinov, Two-Electron Quantum Dot in Magnetic Field: Analytical Results, Phys. Rev. B 55, 13707–13714 (1997)

    Article  Google Scholar 

  48. A. Harju, V. A. Sverdlov and R. M. Nieminen, Variational wave function for a quantum dot in a magnetic field: A quantum Monte-Carlo study, Europhys. Lett. 41, 407–412 (1998)

    Article  Google Scholar 

  49. A. Harju, V. A. Sverdlov and R. M. Nieminen, Many-Body Wave Function for a Quantum Dot in a Weak magnetic Field, Preprint, Univ. of Helsinki (1998)

    Google Scholar 

  50. M. Ferconi and G. Vignale. Current density functional theory of quantum dots in a magnetic field, Physical Review B 50, 14722–14725 (1994)

    Article  Google Scholar 

  51. M. Pi, M. Barranco, A. Emperador, E. Lipparini and Ll. Serra, Current Density Functional approach to large quantum dots in intense magnetic fields, Phys. rev. B 57, 14783–14792 (1998)

    Article  Google Scholar 

  52. O. Heinonen, J. M. Kinaret and M. D. Johnson, Ensemble Density Functional Approach to Charge-Spin Textures in Inhomogeneous Quantum Systems, Phys. Rev. B (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Basel AG

About this paper

Cite this paper

Yngvason, J. (1999). Quantum dots. In: Dittrich, J., Exner, P., Tater, M. (eds) Mathematical Results in Quantum Mechanics. Operator Theory Advances and Applications, vol 108. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8745-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8745-8_12

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9754-9

  • Online ISBN: 978-3-0348-8745-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics