Skip to main content

An Adiabatic Theorem without a Gap Condition

  • Conference paper
Mathematical Results in Quantum Mechanics

Part of the book series: Operator Theory Advances and Applications ((OT,volume 108))

Abstract

The basic adiabatic theorems of classical and quantum mechanics are over-viewed and an adiabatic theorem in quantum mechanics without a gap condition is described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V. Arnold, Mathematical Methods of Classical Mechanics, Springer (1980).

    Google Scholar 

  2. J. E. Avron and A. Elgart, preprint http://xxx.lanl.gov/abs/mathph/9805022

  3. J. E. Avron, J. S. Howland and B. Simon, Adiabatic theorems for dense point spectra, Comm. Math. Phys. 128 (1990), 497–507.

    Article  MathSciNet  MATH  Google Scholar 

  4. J. E. Avron, R. Seiler and L.G. Yaffe, Adiabatic theorems and applications to the quantum Hall effect, Comm. Math. Phys. 110 (1987), 33–49, (Erratum: Comm. Math. Phys. 153 (1993), 649–650).

    Google Scholar 

  5. M. V. Berry, Proc. Roy. Soc. Lond. A 392, 45, (1984); The quantum phase: Five years after, in Geometric phases in physics (A. Shapere and F. Wilczek, Eds., World Scientific, 1989).

    Article  MATH  Google Scholar 

  6. M.V. Berry, Histories of adiabatic transition,Proc. Roy. Soc. Lond. A 429 61–72, (1990).

    Article  Google Scholar 

  7. M.V. Berry and J.M. RobbinsChaotic classical and half classical adiabatic reactions: Geometric magnetism and deterministic friction, Proc. Roy. Soc. Lond. A 442 659–672, (1993). Proc. Roy. Soc. A 392 45 (1984).

    Google Scholar 

  8. M. Born and V. FockBeweis des Adiabatensatzes, Z. Phys. 51 (1928), 165–169.

    Article  MATH  Google Scholar 

  9. E. B. Davies and H. Spohn, Open quantum systems with time-dependent Hamiltonians and their linear response, J. Stat. Phys. 19 511, (1978).

    Article  Google Scholar 

  10. P. Ehrenfest, Adiabatische Invarianten u. Quantentheorie, Ann. d. Phys. 51, 327 (1916)

    Article  Google Scholar 

  11. S. Golin, A. Knauf and S. Marmi The Hannay angles: Geometry Adiabaticity and an example Comm. Math. Phys. 123 95–122, (1989).

    Article  MathSciNet  MATH  Google Scholar 

  12. G. Hagedorn, Adiabatic Expansions near Eigenvalue Crossings Ann. Phys. 196 278–295 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  13. V. Jaksic and J. Segert, On the Landau Zener formula for two-level systems, J. Math. Phys. 34, 2807–2820, (1993).

    Article  MathSciNet  MATH  Google Scholar 

  14. C. Jarzinski, Multiple-time-scale approach to ergodic adiabatic systems: Another look, Phys. Rev. Lett. 71, 839, (1993).

    Article  Google Scholar 

  15. A. Joye and C.E. Pfister, Exponential Estimates in Adiabatic Quantum Evolution, Proceeding of the XII ICMP, Brisbane Australia (1997); Quantum Adiabatic Evolution, in On Three Levels, M. Fannes, C. Maes and A. Verbure Editors, Plenum, (1994).

    Google Scholar 

  16. T. Kato, On the adiabatic theorem of quantum mechanics, Phys. Soc. Jap. 5 (1958), 435–439.

    Article  Google Scholar 

  17. M. Klein and R. Seiler, Power law corrections to the Kubo formula vanish in quantum Hall systems, Comm Math. Phys. 128 (1990), 141.

    Article  MathSciNet  MATH  Google Scholar 

  18. A. Lennard, Adiabatic Invariance to All Orders Ann. Phys. 6, (1959), 261–276.

    Article  Google Scholar 

  19. P. Lochak and C. Meunier Multiphase Averaging for Classical systems, Springer, (1988).

    Book  Google Scholar 

  20. H. Narnhofer and W. Thirring Adiabatic theorem in quantum statistical mechanics, Phys. Rev. A 26 3646, (1982).

    Article  MathSciNet  Google Scholar 

  21. G. Nenciu, Linear Adiabatic Theory: Exponential Estimates, Comm. Math. Phys. 152 479–496, (1993)

    Article  MathSciNet  MATH  Google Scholar 

  22. E. Ott, Goodness of ergodic adiabatic invariants Phys. Rev. Lett. 42 (1979), 1628–1631.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Basel AG

About this paper

Cite this paper

Avron, J.E., Elgart, A. (1999). An Adiabatic Theorem without a Gap Condition. In: Dittrich, J., Exner, P., Tater, M. (eds) Mathematical Results in Quantum Mechanics. Operator Theory Advances and Applications, vol 108. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8745-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8745-8_1

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9754-9

  • Online ISBN: 978-3-0348-8745-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics