Skip to main content

Control of leukocyte adhesion and activation in ischemiareperfusion injury

  • Chapter
Vascular Adhesion Molecules and Inflammation

Part of the book series: Progress in Inflammation Research ((PIR))

  • 79 Accesses

Abstract

Ischemia, which is a marked reduction in blood flow to a vacular bed, can lead to tissue injury and organ dysfunction if it is prolonged. While early restoration of blood flow (reperfusion) to an ischemie organ is essential for prevention of hypox-ic injury, there appears to be a distinct process of vascular dysfunction and parenchymal cell necrosis that can result from this abrupt reperfusion of ischemic tissues. This phenomenon, called “reperfusion injury”, appears to be linked to the reintroduction of molecular oxygen and eventual recruitment of inflammatory cells into postischemic tissues. The importance of activated leukocytes in reperfusion injury is supported by several lines of evidence: (a) leukocytes accumulate in the postischemic tissues, (b) depletion of circulating leukocytes reduces reperfusion-induced tissue injury and “capillary no-reflow”, (c) reagents that interfere with reperfusion-induced leukocyte-endothelial cell adhesion are also effective in blunting the micro vascular dysfunction and tissue injury elicited by ischemia/reperfusion (I/R), (d) reperfusion-induced tissue injury is attenuated in animals that are genetically deficient in adhesion glycoproteins, (e) conditions that exacerbate the inflammatory responses to I/R, such as diabetes and hypercholesterolemia also lead to an enhancement of I/R-induced tissue injury, and (f) I/R-induced inflammatory responses (leukocyte adhesion, increased vascular permeability) can be mimicked in vitro by exposing endothelial cell monolayers to hypoxia and reoxygenation [1-5].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Granger DN, Korthuis RJ (1995) Physiologic mechanisms of postischemic tissue injury. Ann Rev Physiol 57: 311–332

    Article  CAS  Google Scholar 

  2. Granger DN, Kvietys PR, Perry MA (1993) Leukocyte-endothelial cell adhesion induced by ischemia and reperfusion. Can J Physiol Pharmacol 71: 67–75

    Article  PubMed  CAS  Google Scholar 

  3. Jaeschke H, Farhood A, Smith CW (1990) Neutrophils contribute to ischemia/reperfu-sion injury in rat liver in vivo. FASEB J 4: 3355–3359

    PubMed  CAS  Google Scholar 

  4. Horie Y, Wolf R, Anderson DC, Granger DN (1997) Hepatic leukostasis and hypoxic stress in adhesion molecule-deficient mice after gut ischemia-reperfusion. J Clin Invest 99: 781–788

    Article  PubMed  CAS  Google Scholar 

  5. Panes J, Granger DN (1998) Leukocyte-endothelial cell interactions: Molecular mechanisms and implications in gastrointestinal disease. Gastroenterology 114: 1–26

    Article  Google Scholar 

  6. Engler RL, Schmid-Schoenbein GW, Pavelec RS. 1983 Leukocyte capillary plugging in myocardial ischemia and reperfusion in the dog. Am J Pathol 111: 98–111

    PubMed  CAS  Google Scholar 

  7. Jerome SN, Akamitsu T, and Korthuis RJ (1994) Leukocyte adhesion,edema and the development of postischemic capillary no-reflow. Am J Physiol 267: H1329–H1336

    PubMed  CAS  Google Scholar 

  8. Jerome SN, Smith CW, Korthuis RJ (1992). CD18-dependent adherence reactions play an important role in the development of the no-reflow phenomenon. Am J Physiol 263: H1637–H1642

    Google Scholar 

  9. Jerome SN, Dore M, Paulson JC, Smith CW, Korthuis RJ (1994) P-selectin and ICAM-1 dependent adherence reactions: role in the genesis of postischemic capillary no-reflow. Am J Physiol 266: H1316–H1321

    PubMed  CAS  Google Scholar 

  10. Skalak R, Skalak TC(1995) Flow behavior of leukocytes in small tubes. In: DN Granger, GW Schmid-Schoenbein (eds): Physiology and pathophysiology of leukocyte adhesion. Oxford University Press, New York, 97–115

    Google Scholar 

  11. Erlansson M, Bergqvist D, Persson, NH, Svensjo E (1991) Modification of postischemic increase of leukocyte adhesion and vascular permeability in the hamster by iloprost. Prostaglandins 41: 157–168

    Article  PubMed  CAS  Google Scholar 

  12. Granger DN, Benoit JN, Suzuki M, Grisham MB (1989) Leukocyte adherence to venu-lar endothelium during ischemia-reperfusion. Am J Physiol 257: G683–G688

    PubMed  CAS  Google Scholar 

  13. Oliver MG, Specian RD, Perry MA, Granger DN (1991) Morphologic assessment of leukocyte-endothelial cell interactions in mesenteric venules subjected to ischemia and reperfusion. Inflammation 15: 331–346

    Article  PubMed  CAS  Google Scholar 

  14. Kurose I, Wolf R, Grisham MB, Granger DN (1994) Modulation of ischemia/reperfu-sion-induced micro vascular dysfunction by nitric oxide. Circ Res 74: 376–82

    Article  PubMed  CAS  Google Scholar 

  15. Perry MA, Granger DN (1992) Leukocyte adhesion in local versus hemorrhage-induced ischemia. Am J Physiol 263: H810–H815

    PubMed  CAS  Google Scholar 

  16. Perry MA, Granger DN (1991) Role of CD11/CD18 in shear rate-dependent leukocyte-endothelial cell interactions in cat mesenteric venules. J Clin Invest 87: 1798–1804

    Article  PubMed  CAS  Google Scholar 

  17. Bienvenu K, Granger DN (1993) Molecular determinants of shear rate-dependent leukocyte adhesion in postcapillary venules. Am J Physiol 264: H1504–H1508

    PubMed  CAS  Google Scholar 

  18. Bienvenu K, Russell J, Granger DN (1992) Leukotriene B4 mediates shear rate-dependent leukocyte adhesion in mesenteric venules. Circ Res 71: 906–911

    Article  PubMed  CAS  Google Scholar 

  19. Bienvenu K, Russell J, Granger DN (1993) Platelet-activating factor promotes shear rate-dependent leukocyte adhesion in postcapillary venules. J Lipid Mediators 8: 95–103

    CAS  Google Scholar 

  20. Eppihimer MJ, Russell J, Anderson DC, Epstein CJ, Laroux S, Granger DN (1997) Modulation of P-selectin expression in the post-ischemic intestinal microvasculature. AmJ Physiol 273: G1326–G1332

    CAS  Google Scholar 

  21. Kurose I, Anderson DC, Miyasaka M, Tamatani T, Paulson JC, Todd RF, Rusche JR, Granger DN (1994) Molecular determinants of reperfusion-induced leukocyte adhesion and vascular protein leakage. Circ Res 74: 336–343

    Article  PubMed  CAS  Google Scholar 

  22. Kubes P, Kurose I, Granger DN (1994) NO donors prevent integrin-induced leukocyte adhesion but not P-selectin-dependent rolling in postischemic venules. Am J Physio! 267: H931–H937

    CAS  Google Scholar 

  23. Kubes P, Granger DN (1996) Leukocyte-endothelial cell interactions evoked by mast cells. Cardiovasc Res 32: 699–708

    PubMed  CAS  Google Scholar 

  24. Suzuki M, Asako H, Kubes P, Jennings S, Grisham MB, Granger DN (1991) Neu-trophil-derived oxidants promote leukocyte adherence in postcapillary venules. Micro-vase Res 42: 38125–38150

    Google Scholar 

  25. Suzuki M, Grisham MB, Granger, DN (1991) Leukocyte-endothelial cell interactions: role of xanthine oxidase-derived oxidants. J Leukocyte Biol 50: 488–494

    PubMed  CAS  Google Scholar 

  26. Suzuki M, Inauen W, Kvietys PR, Grisham MB, Meininger C, Schelling ME, Granger HS, Granger DN (1989) Superoxide mediates reperfusion-induced leukocyte-endothelial cell interactions. Am J Physiol 257: H1740–H1745

    PubMed  CAS  Google Scholar 

  27. Granger DN (1988) Role of xanthine oxidase and granulocytes in ischemia-reperfusion injury. Am J Physiol 255: H1269–H1275

    PubMed  CAS  Google Scholar 

  28. Kubes P, Suzuki M, Granger DN (1991) Nitric oxide: An endogenous modulator of leukocyte adhesion. Proc Natl Acad Sci USA 88: 4651–4655

    Article  PubMed  CAS  Google Scholar 

  29. Lefer AM, DJ Lefer (1996) The role of nitric oxide and cell adhesion molecules on the microcirculation in ischemia-reperfusion. Cardiovasc Res 32: 743–751

    PubMed  CAS  Google Scholar 

  30. Granger DN, Kurose I, Kvietys PR (1995) Modulation of leukocyte adherence and emigration during ischemia and reperfusion. In: DN Granger, GW Schmid-Schoenbein (eds): Physiology and pathophysiology of leukocyte adhesion. Oxford University Press, New York, 323–338

    Google Scholar 

  31. Kurose I, Argenbright LW, Wolf R, Lianxi L, Granger DN (1997) Ischemia/reperfusion-induced microvascular dysfunction: role of oxidants and lipid mediators. Am J Physiol 272: H2976–H2982

    PubMed  CAS  Google Scholar 

  32. Kubes P, Ibbotson G, Russell J, Wallace JL, Granger DN (1990) Role of platelet-activating factor in ischemia/reperfusion-induced leukocyte adherence. Am J Physiol 259: G300–G305

    PubMed  CAS  Google Scholar 

  33. Inauen W, Granger DN, Meininger CJ, Schelling ME, Granger HJ, Kvietys PR (1990) An in vitro model of ischemia-reperfusion induced microvascular injury. Am J Physiol 259: H925–H931

    PubMed  CAS  Google Scholar 

  34. Ratych RE, Chuknyiska RS, Bulkley GB (1987) The primary localization of free radical generation after anoxia/reoxygenation in isolated endothelial cells. Surgery 102: 122–131

    PubMed  CAS  Google Scholar 

  35. Terada LS, Guidot DM, Leff JA, Willingham IR, Hanley ME, Piermattei D, Repine JE (1992) Hypoxia injures endothelial cells by increasing endogenous xanthine oxidase activity. Proc Natl Acad Sci USA 89: 3362–3366

    Article  PubMed  CAS  Google Scholar 

  36. Terada LS, Willingham IR, Rosandick ME, Leff JA, Kindt GW, Repine JE (1991) Generation of Superoxide anion by brain endothelial cell xanthine oxidase. J Cell Physiol 148: 191–196

    Article  PubMed  CAS  Google Scholar 

  37. Zweier JL, Kuppusamy P, Thompson-Gorman S, Klunk D, Lutty GA (1994) Measurement and characterization of free radical generation in reoxygenated human endothelial cells. Am J Physiol 266: C700–C708

    PubMed  CAS  Google Scholar 

  38. Ichikawa H, Kvietys PR, Wolf R, Granger DN, Aw TY (1997) Molecular mechanisms of anoxia/reoxygenation-induced neutrophil adherence to cultured endothelial cells. Circ Res 81: 922–931

    Article  PubMed  CAS  Google Scholar 

  39. Yoshida N, Granger DN, Anderson DC, Rothlein R, Lane C, Kvietys PR (1992) Anox-ia/reoxygenation induced neutrophil adherence to culture endothelial cells. Am J Physiol 262: H1891–H1898

    PubMed  CAS  Google Scholar 

  40. Inauen W, Payne DK, Kvietys PR, Granger DN (1990) Hypoxia/reoxygenation increases the permeability of endothelial cell monolayers: role of oxygen radicals. Free Rad Biol Med 9: 219–223

    Article  PubMed  CAS  Google Scholar 

  41. Eppihimer MJ, Granger DN (1997) Ischemia/reperfusion-induced leukocyte-endothelial interactions in postcapillary venules. Shock 7: 1–10

    Article  Google Scholar 

  42. Granger DN, Grisham MB, Kvietys PR (1994) Mechanisms of microvascular injury. In: LR Johnson (ed): Physiology of the gastrointestinal tract. Raven Press, New York, 1693–1772

    Google Scholar 

  43. Wechezak AR, Wright TN, Vigers RF, Sauvage LR (1989) Endothelial adherence under shear stress is dependent on microfilament reorganization. J Cell Physiol 139: 136–146

    Article  PubMed  CAS  Google Scholar 

  44. Paully O, Morliere L, Gris JC, Bonne C, Modat G (1992) Hypoxia/ reoxygenation stimulates endothelium to promote neutrophil adhesion. Free Rad Biol Med 13: 21–30

    Article  Google Scholar 

  45. Kvietys PR, Granger DN (1997) Endothelial cell monolayers as a tool for studying microvascular pathophysiology. Am J Physiol 273: G1189–G1199

    PubMed  CAS  Google Scholar 

  46. Milhoan KA, Lane TA, Bloor CM (1992) Hypoxia induces endothelial cells to increase their adherence for neutrophils: role of PAF. Am J Physiol 263: H956–H962

    PubMed  CAS  Google Scholar 

  47. Lo SK, Janakidevi K, Lai L, Malik AB (1993) Hydrogen peroxide-induced increase in endothelial adhesiveness is dependent on ICAM-1 activation. Am J Physiol 264: L406–L412

    PubMed  CAS  Google Scholar 

  48. Bradley JR, Johnson D, Pober JS (1993) Endothelial activation by hydrogen peroxide: selective increases of intercellular adhesion molecule-1 and major histocompatibility complex class I. Am J Pathol 142: 1598–1609

    PubMed  CAS  Google Scholar 

  49. Read MA, Neish AS, Luscinskas FW, Palombella VJ, Maniatis T, Collins T (1995) The proteasome pathway is required for cytokine-induced endothelial-leukocyte adhesion molecular expression. Immunity 2: 493–506

    Article  PubMed  CAS  Google Scholar 

  50. Cobb RR, Felts KA, Parry GCN, Mackman N (1996) Proteasome inhibitors block VCAM-1 and ICAM-1 gene expression in endothelial cells without affecting nuclear translocation of nuclear factor kB. Eur Immunol 26: 839–845

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Basel AG

About this chapter

Cite this chapter

Aw, T.Y., Granger, D.N. (1999). Control of leukocyte adhesion and activation in ischemiareperfusion injury. In: Pearson, J.D. (eds) Vascular Adhesion Molecules and Inflammation. Progress in Inflammation Research. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8743-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8743-4_12

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9753-2

  • Online ISBN: 978-3-0348-8743-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics