Skip to main content

Keratinocytes

  • Chapter
Apoptosis and Inflammation

Part of the book series: Progress in Inflammation Research ((PIR))

  • 102 Accesses

Abstract

Keratinocytes are the epithelial cells which comprise the epidermis of the skin and the epithelium of the oral mucous membranes. The epidermis is a stratified squamous epithelium composed of keratinocytes organized into basal, spinous and granular layers. In terminal differentiation keratinocytes form the stratum corneum, composed of dead keratinocytes termed corneocytes and a complex phospholipid permeability barrier. The principal functions of keratinocytes are to provide an intact epithelial covering for the body and an impermeable barrier resisting loss of water, minerals and protein, and preventing the entrance of toxic environmental agents. Keratinocytes produce large quantities of intermediate filament proteins termed keratins, which are incorporated into complex intracellular bundles which attach to desmosomes at the plasma membrane to produce an extensive filament network which provides stability and strength to the epithelium. The basal pole of basal keratinocytes is attached to the basement membrane zone through specialized attachment structures termed hemidesmosomes. Complex molecular attachments within the basement membrane zone anchor the epithelium to connective tissue components in the dermis. The matrix components in the basement membrane also provide functional signals to the keratinocytes, affecting cell survival, migration and the ability to remodel the epidermis during injury and wound healing [1]. Keratinocyte stem cells are found in the deepest tips of the dermal papillae, while proliferating keratinocytes are found in the basal and the immediately suprabasal epidermis [2, 3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gil SG, Brown TA, Ryan MC, Carter WG (1994) Junctional epidermolysis bullosis: defects in expression of epiligrin/nicein/kalinin and integrin Beta 4 that inhibit hemidesmosome formation. J Invest Dermatol 103: 31S–38S

    PubMed  CAS  Google Scholar 

  2. Furukawa F, Imamura S, Fujita M, Kinoshita K, Yoshitake K, Brown WR, Norris DA (1992) Immunohistochemical localization of proliferating cell nuclear antigen/cyclin in human skin. Arch Dermatol Res 284: 86–91

    PubMed  CAS  Google Scholar 

  3. Bata Csorgo Z, Hammerberg C, Voorhees JJ, Cooper KD (1993) Flow cytometric identification of proliferative subpopulations within normal human epidermis and the localization of the primary hyperproliferative population in psoriasis. J Exp Med 178: 1271–1281

    PubMed  CAS  Google Scholar 

  4. Eckert RL, Crish JF, Robinson NA (1997) The epidermal keratinocyte as a model for the study of gene regulation and cell differentiation. Physiol Reviews 77: 397–424

    CAS  Google Scholar 

  5. Elias PM (1996) Stratum corneum architecture, metabolic activity and interactivity with subjacent cell layers. Exp Dermatol 5: 191–201

    PubMed  CAS  Google Scholar 

  6. Elias PM, Friend DS (1975) The permeability barrier in mammalian epidermis. J Cell Biol 65: 180–191

    PubMed  CAS  Google Scholar 

  7. Cotsarelis G, Sun TT, Lavker RM (1990) Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell 61: 1329–1337

    PubMed  CAS  Google Scholar 

  8. Stenn KS, Lawrence L, Veis D, Korsmeyer S, Seiberg M (1994) Expression of the bc1–2 protooncogene in the cycling adult mouse hair follicle. J Invest Dermatol 103: 107–111

    PubMed  CAS  Google Scholar 

  9. Weedon D, Strutton G (1981) Apoptosis as the mechanism of the involution of hair fol-licles in catagen transformation. Acta Derm Venereol (Stockh) 61: 335–3399

    CAS  Google Scholar 

  10. McCall CA, Cohen JJ (1991) Programmed cell death in terminally differentiating keratinocytes: role of endogenous endonuclease. J Invest Dermatol 97: 111–114

    PubMed  CAS  Google Scholar 

  11. Polakowska RR, Piacentini M, Bartlett R, Goldsmith LA, Haake AR (1994) Apoptosis in human skin development: morphogenesis, periderm, and stem cells. Devel Dyn 199: 176–188

    CAS  Google Scholar 

  12. Cohen JJ (1993) Apoptosis. Immunol Today 14: 126–130

    PubMed  CAS  Google Scholar 

  13. Norris DA, Middleton MH, Whang K, McGovern T, Bennsion SD, David-Bajar K, Duke RC (1997) Human keratinocytes maintain reversible anti-apoptotic defenses in vivo and in vitro. Apoptosis 2: 136–148

    PubMed  CAS  Google Scholar 

  14. Weedon D (1980) Apoptosis in lichen planus. Clin Exp Dermatol 5: 425–430

    PubMed  CAS  Google Scholar 

  15. Shimizu M, Higaki Y, Higaki M, Kawashima M (1997) The role of granzyme B-expressing CD8-positive T cells in apoptosis of keratinocytes in lichen planus. Arch Dermatol Res 289: 527–532

    PubMed  CAS  Google Scholar 

  16. Langley RG, Walsh N, Nevill T, Thomas L, Rowden G (1996) Apoptosis is the mode of keratinocyte death in cutaneous graft-versus-host disease. J Amer Acad Dermatol 35: 187–190

    CAS  Google Scholar 

  17. Yoo YH, Gilliam AC, Whitaker-Menezes D, Korngold R, Murphy GF (1997) Experimental induction and ultrastructural characterization of apoptosis in murine acute cutaneous graft-versus-host disease. Arch Dermatol Res 289: 389–398

    PubMed  CAS  Google Scholar 

  18. Krane JF, Murphy DP, Carter DM, Krueger JG (1991) Synergistic effects of epidermal growth factor (EGF) and insulin-like growth factor I/somatomedin C (IGF-I) on keratinocyte proliferation may be mediated by IGF-I transmodulation of the EGF receptor. J Invest Dermatol 96: 419–424

    PubMed  CAS  Google Scholar 

  19. Poumay Y, Pittelkow MR (1995) Cell density and culture factors regulate keratinocyte commitment to differentiation and expression of suprabasal K1/K10 keratins. J Invest Dermatol 104: 271–276

    PubMed  CAS  Google Scholar 

  20. Norris DA (1995) Editorial: Differential control of cell death in the skin. Arch Dermatol 131: 945–948

    PubMed  CAS  Google Scholar 

  21. Stoll SW, Benedict M, Mitra R, Hiniker A, Elder JT, Nunez G (1998) EGF receptor signaling inhibits keratinocyte apoptosis: evidence for mediation by bcl-xL. Oncogene 16: 1493–1499

    PubMed  CAS  Google Scholar 

  22. Ben-Bassat H, Rosenbaum-Mitrani S, Hartzstark Z, Shlomai Z, Kleinberger-Doron N, Gazit A, Plowman G, Levitzki R, Tsvieli R, Levitzki A (1997) Inhibitors of epidermal growth factor receptor kinase and of cyclin-dependent kinase 2 activation induce growth arrest, differentiation, and apoptosis of human papilloma virus 16- immortalized human keratinocytes. Cancer Res 57: 3741–3750

    PubMed  CAS  Google Scholar 

  23. Chen CS, Lavker RM, Rodeck U, Risse B, Jensen PJ (1995) Use of a serum-free epidermal culture model to show deleterious effects of epidermal growth factor on morpho-genesis and differentiation. J Invest Dermatol 104: 107–112

    PubMed  CAS  Google Scholar 

  24. Barreca A, De Luca M, Del Monte P, Bondanza S, Damonte G, Cariola G, Di Marco E, Giordano G, Cancedda R, Minuto F (1992) in vitro paracrine regulation of human keratinocyte growth by fibroblast-derived insulin-like growth factors. J Cell Physiol 151: 262–268

    PubMed  CAS  Google Scholar 

  25. Vardy DA, Kari C, Lazarus GS, Jensen PJ, Zilberstein A, Plowman GD, Rodeck U (1995) Induction of autocrine epidermal growth factor receptor ligands in human keratinocytes by insulin/insulin-like growth factor-1. J Cell Physiol 163: 257–265

    PubMed  CAS  Google Scholar 

  26. Hotchin NA, Gandarillas A, Watt FM (1995) Regulation of cell surface Beta 1 integrin levels during keratinocyte terminal differentiation. J Cell Biol 128: 1209–1219

    PubMed  CAS  Google Scholar 

  27. Hodivala KJ, Watt FM (1994) Evidence that cadherins play a role in the downregulation of integrin expression that occurs during keratinocyte terminal differentiation. J Cell Biol 124: 589–600

    PubMed  CAS  Google Scholar 

  28. Strickland JE, Jetten AM, Kawamura H, Yuspa SH (1984) Interaction of epidermal growth factor with basal and differentiating epidermal cells of mice resistant and sensitive to carcinogenesis. Carcinogenesis 5: 735–740

    PubMed  CAS  Google Scholar 

  29. Jetten AM (1980) Retinoids specifically enhance the number of epidermal growth factor receptors.Nature 284: 626–629

    PubMed  CAS  Google Scholar 

  30. Jetten AM (1990) Multi-stage program of differentiation in human epidermal keratinocytes: regulation by retinoids. J Invest Dermatol 95: 44S–46S

    Google Scholar 

  31. Reynolds NJ, Talwar HS, Baldassare JJ, Henderson PA, Elder JT, Voorhees JJ, Fisher GJ (1993) Differential induction of phosphatidylcholine hydrolysis, diacylglycerol formation and protein kinase C activation by epidermal growth factor and transforming growth factor-alpha in normal human skin fibroblasts and keratinocytes [published erratum appears in Biochem J 1993 Nov 1; 295 (pt 3): 903]. Biochem J 294: 535–544

    PubMed  CAS  Google Scholar 

  32. Chin L, Schreiber-Agus N, Pellicer I, Chen K, Lee HW, Dudast M, Cordon-Cardo C, DePinho RA (1995) Contrasting roles for Myc and Mad proteins in cellular growth and differentiation. Proc Natl Acad Sci USA 92: 8488–8492

    PubMed  CAS  Google Scholar 

  33. Chin L, Liegeois N, DePinho RA, Schreiber-Agus N (1996) Functional interactions among members of the Myc superfamily and potenbtial relevance to cutaneous growth and development. J Invest Dermatol Symp Proc 1 (2): 128–135

    CAS  Google Scholar 

  34. Wakita H, Tokura Y, Yagi H, Nishimura K, Furukawa F, Takigawa M (1994) Keratinocyte differentiation is induced by cell-permeant ceramides and its proliferation is promoted by sphingosine. Arch Dermatol Res 286: 350–354

    PubMed  CAS  Google Scholar 

  35. Obeid LM, Linardic CM, Karolak LA, Hannun YA (1995) Programmed cell death induced by ceramide. Science 259: 1769–1771

    Google Scholar 

  36. Werner S, Smola H, Liao X, Longaker MT, Krieg T, Hofschneider PH, Williams LT (1994) The function of KGF in morphogenesis of epithelium and reepithelialization of wounds. Science 266: 819–822

    PubMed  CAS  Google Scholar 

  37. Werner S, Breeden M, Hubner G, Greenhalgh DG, Longaker MT (1994) Induction of keratinocyte growth factor expression is reduced and delayed during wound healing in the genetically diabetic mouse. J Invest Dermatol 103: 469–473

    PubMed  CAS  Google Scholar 

  38. Werner S, Weinberg W, Liao X, Peters KG, Blessing M, Yuspa SH, Weiner RL, Williams LT (1993) Targeted expression of a dominant-negative FGF receptor mutant in the epidermis of transgenic mice reveals a role of FGF in keratinocyte organization and differentiation. EMBO J 12: 2635–2643

    PubMed  CAS  Google Scholar 

  39. Werner S, Peters KG, Longaker MT, Fuller-Pace F, Banda MJ, Williams LT (1992) Large induction of keratinocyte growth factor expression in the dermis during wound healing. Proc Natl Acad Sci USA 89: 6896–6900

    PubMed  CAS  Google Scholar 

  40. Ueki T, Koji T, Tamiya S, Nakane PK, Tsuneyoshi M (1995) Expression of basic fibroblast growth factor and fibroblast growth factor receptor in advanced gastric carcinoma. J Pathol 177: 353–361

    PubMed  CAS  Google Scholar 

  41. Mason IJ (1994) The ins and outs of fibroblast growth factors. Cell 78: 547–552

    PubMed  CAS  Google Scholar 

  42. Norris DA, Whang K, David-Bajar K, Bennion SD (1997) The influence of ultraviolet light on immunological cytotoxicity in the skin. Photochem Photobiol 65: 636–646

    PubMed  CAS  Google Scholar 

  43. Norris DA, Horikawa T, Morelli JG (1994) Melanocyte destruction and repopulation in vitiligo. Pigment Cell Res 7: 193–203

    PubMed  CAS  Google Scholar 

  44. Koh JY, Gwag BJ, Lobner D, Choi DW (1995) Potentiated necrosis of cultured cortical neurons by neurotrophins. Science 268: 573–575

    PubMed  CAS  Google Scholar 

  45. Allsopp TE, Wyatt S, Paterson HF, Davies AM (1993) The proto-oncogene bd-2 can selectively rescue neurotrophic factor-dependent neurons from apoptosis. Cell 73: 295–307

    PubMed  CAS  Google Scholar 

  46. Brooks PC, Montgomery AM, Rosenfeld M, Reisfeld RA, Hu T, Klier G, Cheresh DA (1994) Integrin alpha v beta 3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell 79: 1157–1164

    PubMed  CAS  Google Scholar 

  47. Montgomery AM, Reisfeld RA, Cheresh DA (1994) Integrin alpha v beta 3 rescues melanoma cells from apoptosis in three-dimensional dermal collagen. Proc Natl Acad Sci USA 91: 8856–8860

    PubMed  CAS  Google Scholar 

  48. Zhang Z, Vuori K, Reed JC, Ruoslahti E (1995) The alpha 5 beta 1 integrin supports survival of cells on fibronectin and up-regulates bc1–2 expression. Proc Natl Acad Sci USA 92: 6161–6165

    PubMed  CAS  Google Scholar 

  49. Meredith JE, Jr., Fazeli B, Schwartz MA (1993) The extracellular matrix as a cell survival factor. Mol Biol Cell 4: 953–961

    PubMed  CAS  Google Scholar 

  50. Re F, Zanetti A, Sironi M, Polentarutti N, Lanfrancone L, Dejana E, Colotta F (1994) Inhibition of anchorage-dependent cell spreading triggers apoptosis in cultured human endothelial cells. J Cell Biol 127: 537–546

    PubMed  CAS  Google Scholar 

  51. Henseleit U, Rosenbach T, Kolde G (1996) Induction of apoptosis in human HaCaT keratinocytes. Arch Dermatol Res 288: 676–683

    PubMed  CAS  Google Scholar 

  52. Benassi L, Ottani D, Fantini F, Marconi A, Chiodino C, Giannetti A, Pincelli C (1997) 1, 25-dihydroxyvitamin D3, transforming growth factor beta 1, calcium, and ultraviolet B radiation induce apoptosis in cultured human keratinocytes. J Invest Dermatol 109: 276–282

    PubMed  CAS  Google Scholar 

  53. Reinartz J, Bechtel MJ, Kramer MD (1996) Tumor necrosis factor-alpha-induced apoptosis in a human keratinocyte cell line (HaCaT) is counteracted by transforming growth factor-alpha. Exp Cell Res 228: 334–340

    PubMed  CAS  Google Scholar 

  54. Hockenbery DM, Zutter M, Hickey W, Nahm M, Korsmeyer SJ (1991) Bcl-2 protein is topographically restricted in tissues characterized by apoptotic cell death. Proc Natl Acad Sci USA 88: 6961–6965

    PubMed  CAS  Google Scholar 

  55. Haake AR, Polakowska RR (1993) Cell death by apoptosis in epidermal biology. J Invest Dermatol 101: 107–112

    PubMed  CAS  Google Scholar 

  56. Rodriguez-Villanueva J, Greenhalgh D, Wang XJ, Bundman D, Cho S, Delehedde M, Roop D, McDonnell TJ (1998) Human keratin-1.bc1–2 transgenic mice aberrantly express keratin 6, exhibit reduced sensitivity to keratinocyte cell death induction, and are susceptible to skin tumor formation. Oncogene 16: 853–863

    PubMed  CAS  Google Scholar 

  57. Wrone-Smith T, Johnson T, Nelson B, Boise LH, Thompson CB, Nunez G, Nickoloff BJ (1995) Discordant expression of bcl-x and bc1–2 by keratinocytes in vitro and psoriatic keratinocytes in vivo. Am J Pathol 146: 1079–1088

    PubMed  CAS  Google Scholar 

  58. Rodeck U, Jost M, Kari C, Shih DT, Lavker RM, Ewert DL, Jensen PJ (1997) EGF-R dependent regulation of keratinocyte survival. J Cell Sci 110: 113–121

    PubMed  CAS  Google Scholar 

  59. Pena JC, Fuchs E, Thompson CB (1997) Bel-x expression influences keratinocyte cell survival but not terminal differentiation. Cell Growth Diff 8: 619–629

    PubMed  CAS  Google Scholar 

  60. Krajewski S, Bodrug S, Krajewska M, Shabaik A, Gascoyne R, Berean K, Reed JC (1995) Immunohistochemical analysis of mc1–1 protein in human tissues. differential regulation of mc1–1 and bc1–2 protein production suggests a unique role for mcl-1 in control of programmed cell death in vivo. Am J Pathol 146: 1309–1319

    PubMed  CAS  Google Scholar 

  61. Pincelli C, Haake AR, Benassi L, Grassilli E, Magnoni C, Ottani D, Polakowska R, Franceschi C, Giannetti A (1998) Autocrine nerve growth factor protects human keratinocytes from apoptosis through its high affinity receptor (trk): a role for bc1–2. J Invest Dermatol 109: 757–764

    Google Scholar 

  62. Rodeck U, Jost M, DuHadaway J, Kari C, Jensen PJ, Risse B, Ewert DL (1997) Regulation of bd-xl expression in human keratinocytes by cell-substratum adhesion and the epidermal growth factor receptor. Proc Natl Acad Sci USA 94: 5067–5072

    PubMed  CAS  Google Scholar 

  63. Kinoshita T, Yokota T, Arai K, Miyajima A (1995) Regulation of bd-2 expression by oncogenic ras protein in hematopoietic cells. Oncogene 10: 2207–2212

    PubMed  CAS  Google Scholar 

  64. Rak J, Mitsuhashi Y, Erdos V, Huang SN, Filmus J, Kerbel RS (1995) Massive programmed cell death in intestinal epithelial cells induced by three-dimensional growth conditions: suppression by mutant c-h-ras oncogene expression. J Cell Biol 131: 1587–1598

    PubMed  CAS  Google Scholar 

  65. Sanchez-Garcia I, Martin-Zanca D (1997) Regulation of bc1–2 gene expression by bcrabl is mediated by ras. J Mol Biol 267: 225–228

    PubMed  CAS  Google Scholar 

  66. Miyashita T, Krajewski S, Krajewska M, Wang HG, Lin HK, Liebermann DA, Hoffman B, Reed JC (1994) Tumor suppressor p53 is a regulator of bc1–2 and bax gene expression in vitro and in vivo. Oncogene 9: 1799–1805

    CAS  Google Scholar 

  67. Aragane Y, Kulms D, Metze D, Wilkes G, Poppelmann B, Luger TA, Schwarz T (1998) Ultraviolet light induces apoptosis via direct activation of CD95 (Fas/APO-1) independently of its ligand CD95L. J Cell Biol 140: 171–182

    PubMed  CAS  Google Scholar 

  68. Schwarz A, Mahnke K, Luger TA, Schwarz T (1997) Pentoxifylline reduces the formation of sunburn cells. Exp Dermatol 6: 1–5

    PubMed  CAS  Google Scholar 

  69. Budtz PE, Spies 1(1989) Epidermal tissue homeostasis: apoptosis and cell emigration as mechanisms of controlled cell deletion in the epidermis of the toad, Bufo bufo. Cell Tissue Res 256: 475–486

    PubMed  CAS  Google Scholar 

  70. Watt FM, Kubler MD, Hotchin NA, Nicholson LJ, Adams JC (1993) Regulation of keratinocyte terminal differentiation by integrin-extracellular matrix interactions. J Cell Sci 106: 175–182

    PubMed  CAS  Google Scholar 

  71. Watt FM, Jones PH (1993) Expression and function of the keratinocyte integrins. Development Suppl 185–192

    Google Scholar 

  72. Ruoslahti E, Reed JC (1994)Anchorage dependence, integrins, and apoptosis. Cell 77: 477–478

    PubMed  CAS  Google Scholar 

  73. Frisch SM, Ruoslahti E (1997) Integrins and anoikis. Curr Opin Cell Biol 9: 701–706

    PubMed  CAS  Google Scholar 

  74. Mitra RS, Wrone-Smith T, Simonian P, Foreman KE, Nunez G, Nickoloff BJ (1997) Apoptosis in keratinocytes is not dependent on induction of differentiation. Lab Invest 76: 99–107

    PubMed  CAS  Google Scholar 

  75. Gandarillas A, Watt FM (1997) C-myc promotes differentiation of human epidermal stem cells. Genes Dev 11: 2869–2882

    PubMed  CAS  Google Scholar 

  76. Evan G, Harrington E, Fanidi A, Land H, Amati B, Bennett M (1994) Integrated control of cell proliferation and cell death by the c-myc oncogene. Philos Trans R Soc Lond B Biol Sci 345: 269–275

    PubMed  CAS  Google Scholar 

  77. Packham G, Cleveland JL (1995) C-myc and apoptosis. Biochim Biophys Acta 1242: 11–28

    PubMed  Google Scholar 

  78. Brysk MM, Selvanayagam P, Arany I, Brysk H, Tyring SK, Rajaraman S (1995) Induction of apoptotic nuclei by interferon-gamma and by predesquamin in cultured keratinocytes. J Inter Cyto Res 15: 1029–1035

    CAS  Google Scholar 

  79. Raff MC (1992) Social controls on cell survival and cell death. Nature 356: 397–400

    PubMed  CAS  Google Scholar 

  80. Kikuchi K, Tsutsumi K, Ohta Y, Yasumoto S (1997) Time correlation of commitment to calcium-induced apoptosis and terminal differentiation in human ectocervical keratinocytes in suspension cultures. Cell Growth Diff 8: 571–579

    PubMed  CAS  Google Scholar 

  81. Young AR (1987) The sunburn cell. Photo-Dermatol 4: 127–134

    CAS  Google Scholar 

  82. Godar DE, Lucas AD (1995) Spectral dependence of UV-induced immediate and delayed apoptosis: the role of membrane and DNA damage. Photochem Photobiol 62: 108–113

    PubMed  CAS  Google Scholar 

  83. Gniadecki R, Hansen M, Wulf HC (1997) Two pathways for induction of apoptosis by ultraviolet radiation in cultured human keratinocytes. J Invest Dermatol 109: 163–169

    PubMed  CAS  Google Scholar 

  84. Middleton MH, Norris DA (1995) Cytokine-induced ICAM-1 expression in human keratinocytes is highly variable in keratinocyte strains from different donors. J Invest Dermatol 104: 489–496

    PubMed  CAS  Google Scholar 

  85. Kurimoto I, Streilein JW (1992) Cis-urocanic acid suppression of contact hypersensitivity induction is mediated via tumor necrosis factor-alpha. J Immunol 148: 3072–3078

    PubMed  CAS  Google Scholar 

  86. Schwarz A, Bhardwaj R, Aragane Y, Mahnke K, Riemann H, Metze D, Luger TA, Schwarz T (1995) Ultraviolet-B-induced apoptosis of keratinocytes: evidence for partial involvement of tumor necrosis factor-alpha in the formation of sunburn cells. J Invest Dermatol 104: 922–927

    PubMed  CAS  Google Scholar 

  87. Rosette C, Karin M (1996) Ultraviolet light and osmotic stress: activation of the JNK cascade through multiple growth factor and cytokine receptors. Science 274: 1194–1197

    PubMed  CAS  Google Scholar 

  88. Devary Y, Rosette C, Didonato JA, Karin M (1993) NF-kappa B activation by ultraviolet light not dependent on a nuclear signal. Science 261: 1442–1445

    PubMed  CAS  Google Scholar 

  89. Johnson NL, Gardner AM, Diener KM, Lange-Carter CA, Gleavy J, Jarpe MB, Minden A, Karin M, Zon LI, Johnson GL (1996) Signal transduction pathways regulated by mitogen-activated/extracellular response kinase kinase kinase induce cell death. J Biol Chem 271: 3229–3237

    PubMed  CAS  Google Scholar 

  90. Aberer W, Schuler G, Stingl G, Honigsmann H, Wolff K (1981) Ultraviolet light depletes surface markers of Langerhans cells. J Invest Dermatol 76: 202–210

    PubMed  CAS  Google Scholar 

  91. Bergstresser PR, Cruz PD, Jr, Takashima A (1993) Dendritic epidermal T cells: lessons from mice for humans. J Invest Dermatol 100: 80S–83S

    PubMed  CAS  Google Scholar 

  92. Johnson R, Staiano-Coico L, Austin L, Cardinale I, Nabeya-Tsukifuji R, Krueger JG (1996) PUVA treatment selectively induces a cell cycle block and subsequent apoptosis in human T-lymphocytes. Photochem Photobiol 63: 566–571

    PubMed  CAS  Google Scholar 

  93. Krueger JG, Wolfe JT, Nabeya RT, Vallat VP, Gilleaudeau P, Heftier NS, Austin LM, Gottlieb AB (1995) Successful ultraviolet B treatment of psoriasis is accompanied by a reversal of keratinocyte pathology and by selective depletion of intraepidermal T cells. J Exp Med 182: 2057–2068

    PubMed  CAS  Google Scholar 

  94. Norris DA (1989) Immunological cytotoxicity of cutaneous cellular targets. In: D Norris (ed): Immune mechanisms in cutaneous disease. Marcel Dekker Inc, New York, 123–166

    Google Scholar 

  95. Muller-Eberhard HJ (1986)The membrane attack complex of complement. Ann Rev Immunol 4: 503–528

    CAS  Google Scholar 

  96. Young JDE, Podack ER, Cohn ZA (1986) Properties of a purified pore-forming protein (Perforin 1) isolated from H-2 restricted T cell granules. J Exp Med 164: 144–155

    PubMed  CAS  Google Scholar 

  97. Irmler M, Hertig S, MacDonald HR, Sadoul R, Becherer JD, Proudfoot A, Solari R, Tschopp J (1995) Granzyme a is an interleukin 1 beta-converting enzyme. J Exp Med 181: 1917–1922

    PubMed  CAS  Google Scholar 

  98. Peitsch MC, Tschopp J (1994) Granzyme b. Meth Enzymol 244: 80–87

    PubMed  CAS  Google Scholar 

  99. Duke RC, Persechini PM, Chang S, Liu CC, Cohen JJ, Young JD (1989) Purified perforin induces target cell lysis but not DNA fragmentation. J Exp Med 170: 1451–1456

    PubMed  CAS  Google Scholar 

  100. Taylor MK, Cohen JJ (1992) Cell-mediated cytotoxicity. Curr Opin Immunol 4: 338–343

    PubMed  CAS  Google Scholar 

  101. Lowin B, Beermann F, Schmidt A, Tschopp J (1994) A null mutation in the perforin gene impairs cytolytic t lymphocyte-and natural killer cell-mediated cytotoxicity. Proc Natl Acad Sci USA 91: 11571–11575

    PubMed  CAS  Google Scholar 

  102. Lowin B, Hahne M, Mattmann C, Tschopp J (1994) Cytolytic T-cell cytotoxicity is mediated through perforin and Fas lytic pathways. Nature 370: 650–652

    PubMed  CAS  Google Scholar 

  103. Wright SC, Kumar P, Tam AW, Shen N, Varma M, Larrick JW (1992) Apoptosis and DNA fragmentation precede TNF-induced cytolysis in U937 cells. J Cell Biochem 48: 344–35555

    PubMed  CAS  Google Scholar 

  104. Stalder T, Hahn S, Erb P(1994) Fas antigen is the major target molecule for CD4+T cell-mediated cytotoxicity. J Immunol 152: 1127–1133

    PubMed  CAS  Google Scholar 

  105. Suda T, Takahashi T, Golstein P, Nagata S (1993) Molecular cloning and expression of the Fas ligand, a novel member of the tumor necrosis factor family. Cell 75: 1169–1178

    PubMed  CAS  Google Scholar 

  106. Cohen JJ (1993) Programmed cell death and apoptosis in lymphocyte development and function. Chest 103: 99S–101S

    PubMed  CAS  Google Scholar 

  107. Watanabe Fukunaga R, Brannan CI, Copeland NG, Jenkins NA, Nagata S (1992) Lymphoproliferation disorder in mice explained by defects in Fas antigen that mediates apoptosis. Nature 356: 314–317

    PubMed  CAS  Google Scholar 

  108. Berthou C, Michel L, Soulie A, Jean-Louis F, Flageul B, Dubertret L, Sigaux F, Zhang Y, Sasportes M (1997) Acquisition of granzyme B and Fas ligand proteins by human keratinocytes contributes to epidermal cell defense. J Immunol 159: 5293–5300

    PubMed  CAS  Google Scholar 

  109. Shiohara T, Moriya N, Gotoh C, Saizawa K, Nagashima M (1988) Lichenoid tissue reaction induced by local transfer of Ia-reactive T-cell clones. III. Role of Ia+ keratinocytes in the epidermotropic migration of the T cells. J Invest Dermatol 91: 69–75

    PubMed  CAS  Google Scholar 

  110. Shiohara T, Moriya N, Tanaka Y, Arai Y, Hayakawa J, Chiba M, Nagashima M (1988) Immunopathologic study of lichenoid skin diseases: correlation between HLA-DR-positive keratinocytes or Langerhans cells and epidermotropic T cells. J Am Acad Dermatol 18: 67–74

    PubMed  CAS  Google Scholar 

  111. Dekker NP, Lozada-Nur F, Lagenaur LA, MacPhail LA, Bloom CY, Regezi JA (1997) Apoptosis-associated markers in oral lichen planus. J Oral Pathol Med 26: 170–175

    PubMed  CAS  Google Scholar 

  112. Norris DA (1993) Pathomechanisms of photosensitive lupus erythematosus. J Invest Dermatol 100: 58S–68S

    PubMed  CAS  Google Scholar 

  113. Norris DA, Lee LA (1985) Antibody-dependent cellular cytotoxicity and skin disease. J Invest Dermatol 85: 165s-175s

    Google Scholar 

  114. Volc Platzer B, Anegg B, Milota S, Pickl W, Fischer G (1993) Accumulation of gamma delta T cells in chronic cutaneous lupus erythematosus. J Invest Dermatol 100: 84S–91S

    Google Scholar 

  115. LeFeber WP, Norris DA, Ryan SR, Huff JC, Lee LA, Kubo M, Boyce ST, Kotzin BL Weston WL (1984) Ultraviolet light induces binding of antibodies to selected nuclear antigens on cultured human keratinocytes. J Clin Invest 74: 1545–1551

    PubMed  CAS  Google Scholar 

  116. Furukawa F, Kashihara Sawami M, Lyons MB, Norris DA (1990) Binding of antibodies to the extractable nuclear antigens SS-A/Ro and SS-B/La is induced on the surface of human keratinocytes by ultraviolet light (UVL): implications for the pathogenesis of photosensitive cutaneous lupus. J Invest Dermatol 94: 77–85

    PubMed  CAS  Google Scholar 

  117. Casciola-Rosen LA, Anhalt G, Rosen A (1994) Autoantigens targeted in systemic lupus erythematosus are clustered in two populations of surface structures on apoptotic keratinocytes [see comments]. J Exp Med 179: 1317–1330

    PubMed  CAS  Google Scholar 

  118. lnachi S, Mizutani H, Shimizu M (1997) Epidermal apoptotic cell death in erythema multiforme and Stevens-Johnson syndrome. contribution of perforin-positive cell infiltration. Arch Dermatol 133: 845–849

    Google Scholar 

  119. Chrysomali E, Lozada-Nur F, Dekker NP, Papanicolaou SI, Regezi JA (1997) Apoptosis in oral erythema multiforme. Oral Surg Oral Med 83: 272–280

    CAS  Google Scholar 

  120. Seiberg M, Marthinuss J, Stenn KS (1995) Changes in expression of apoptosis-associated genes in skin mark early catagen. J Invest Dermatol 104: 78–82

    PubMed  CAS  Google Scholar 

  121. Hebert JM, Rosenquist T, Gotz J, Martin GR (1994) FGFS as a regulator of the hair growth cycle: evidence from targeted and spontaneous mutations. Cell 78: 1017–1025

    PubMed  CAS  Google Scholar 

  122. Ahmad W, Faiyaz ul Haque M, Brancolini V, Tsou HC, ul Haque S, Lam H, Aita VM, Owen J, deBlaquiere M, Frank J, Cserhalmi-Friedman PB, Leask A, McGrath JA, Peacocke M, Ahmad M, Ott J, Christiano AM (1998) Alopecia universalis associated with a mutation in the human hairless gene. Science 279: 720–724

    PubMed  CAS  Google Scholar 

  123. Sorenson CM, Rogers SA, Korsmeyer SJ, Hammerman MR (1995) Fulminant metanephric apoptosis and abnormal kidney development in bcl-2-deficient mice. Am J Physiol 268: F73—F81

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Basel AG

About this chapter

Cite this chapter

Norris, D.A., Shellman, Y., Bellus, G.A. (1999). Keratinocytes. In: Winkler, J.D. (eds) Apoptosis and Inflammation. Progress in Inflammation Research. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8741-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8741-0_8

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9752-5

  • Online ISBN: 978-3-0348-8741-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics