Skip to main content

Some Hyperbolic Models for Wave Propagation

  • Conference paper

Part of the book series: International Series of Numerical Mathematics ((ISNM,volume 130))

Abstract

Hyperbolic models to describe the wave motion in continuous media are considered. Degenerated hyperbolic models as mathematical approximations are constructed. Some hyperbolic models as extensions of the corresponding parabolic models, as well as some new hyperbolic models are presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Bento, Transverse waves in a relativistic rigid body, Int.J. Theor. Phys., 24 (6) (1985), 653–657.

    Article  MathSciNet  MATH  Google Scholar 

  2. L. Bers, J. Fritz and M. Schechter, Partial differential equations, Interscience, New York — London — Sydney, 1964.

    MATH  Google Scholar 

  3. C. Cattaneo, Sur one forme de l’équation de la chaleur éliminant le paradoxe d’une propagation instantanée, Compt. Rend. S. Acad. Sci., 247 (4) (1958), 431–433.

    MathSciNet  Google Scholar 

  4. R. Courant, Methods of mathematical physics, I (1935), II (1962), Interscience, New York.

    Google Scholar 

  5. R.W. Davies, The connection between the Smoluchowsky equation and the KramersChandrasekhar equation, Phys. Review, 93 (6) (1954), 1169–1171.

    Article  MATH  Google Scholar 

  6. B.I. Davydov, Diffusion equation with taking into account of molecular velocity,(in Russian), Doklady Akad. Nauk. USSR, 1935, 2 (7), (1935), 474–478.

    Google Scholar 

  7. K.S. Eckhoff, On dispersion for linear waves in nonuniform media, SIAM J. Appl. Math., 44 (6) (1984), 1092–1105.

    MathSciNet  MATH  Google Scholar 

  8. J. Engelbrecht, On the finite velocity of wave motion modelled by nonlinear evolution equations, Proc. of the 2nd Int. Conf. on Nonlinear Hyperbolic Problems. In: Notes on Numerical Fluid Mechanics, Eds J.Ballmann and R.Jeltsch, Vieweg, Braunschweig, 24 (1989), 115–127.

    Google Scholar 

  9. D. Fusco and N. Manganaro, Nonlinear wave features of a hyperbolic model describing dissipative magnetofluid dynamics, J. of Theor. and Appl. Mech., 6 (6), (1987), 761–770.

    MATH  Google Scholar 

  10. J. Hadamard, Le problème de Cauchy et les équations aux dérivées partielles linéaires hyperboliques, Paris, 1932 (Russian translation).

    Google Scholar 

  11. R. Hersh, Boundary conditions for equations of evolution. Archive Ration. Mech. and Analysis, 16 (4) (1964), 243–264.

    Article  MathSciNet  MATH  Google Scholar 

  12. D.D. JosephPreziosi L. Heat waves. Rewievs of Modern Physics„ 61 (1) (1989), 41–73.

    Article  MATH  Google Scholar 

  13. B.G. Kuznetsov, Hyperbolic modification of Navier-Stokes equations, (in Russian, translated in USA), Applied Mechanics and Engineering Physics, 6 (1993), 133–141.

    Google Scholar 

  14. S.V. Korsunsky and I.T. Selezov, Some wave models of dynamics of electrically conducting fluid, (in Russian). Hydroaeromechanics and the Theory of Elasticity. Dnepropetrovsk, Dneprop. University, 1991,34–40.

    Google Scholar 

  15. P.K. Kythe, Fundamental solutions for differential operators and applications, Birkhäuser Boston, 1996.

    Book  Google Scholar 

  16. J.L. Leander, On the relation between the wavefront speed and the group velocity concept, J. Acoust. Soc. Amer., 100 (6) (1996), 3503–3507.

    Article  Google Scholar 

  17. J.C. Maxwell, On the dynamical theory of gases,Phil. Trans. Roy. Soc., 157 (1967), 49–89.

    Google Scholar 

  18. C. Misokhata, The theory of partial differential equations, 1965, Russian translated edition, 1977.

    Google Scholar 

  19. Ph.M. Morse and H. Feshbach, Methods of theoretical physics, Part 1., McGraw-Hill Book Company, Inc., New York, Toronto, London, 1953.

    Google Scholar 

  20. P. Perzyna and A. Drabik, Analysis of the fundamental equations describing thermoplastic flow process in solid body, Arch. Mech., 43 (2–3) (1991), 287–296.

    MATH  Google Scholar 

  21. I.T. Selezov, Conception of hyperbolicity in the theory of control dynamic systems, (in Russian). In: Cybernetics and Computational Engineering. Kiev, Institute of Cybernetics, Ukr. Acad. Sci., 1 (1969), 131–137.

    MathSciNet  MATH  Google Scholar 

  22. I.T. Selezov, Wave hydraulic models as mathematical approximations, Proc. the 22nd Congress of IAHR. Techn. Session B., 1987, 301–306.

    Google Scholar 

  23. I.T. Selezov, Modelling wave and diffraction processes in continuous media, Kiev, Naukova Dumka, 1989, 204 pp.

    Google Scholar 

  24. I.T. Selezov, Hyperbolic models of wave propagation in bars, plates and shells. Mechanics of Solids, Translated from Izvestia Akademii Nauk Rossii. Meckanika tverdogo tela., 2 (1994), 64–77.

    Google Scholar 

  25. H.E. Wilhelm and S.H. Hong, Stress relaxation waves in fluids, Physical Rewiev, A, 22 (3) (1980), 1266–1271.

    Article  MathSciNet  Google Scholar 

  26. M. Zlamal, The parabolic equation as a limiting case of hyperbolic and elliptic equations, Proc. Conf. Prague: Publishing House of the Czhechoslovak Acad. Sci., 1963, 243–247.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Basel AG

About this paper

Cite this paper

Selezov, I. (1999). Some Hyperbolic Models for Wave Propagation. In: Jeltsch, R., Fey, M. (eds) Hyperbolic Problems: Theory, Numerics, Applications. International Series of Numerical Mathematics, vol 130. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8724-3_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8724-3_34

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9744-0

  • Online ISBN: 978-3-0348-8724-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics