Skip to main content

Relative Trace Ideals and Cohen-Macaulay Quotients of Modular Invariant Rings

  • Conference paper

Part of the book series: Progress in Mathematics ((PM,volume 173))

Abstract

Let G be a finite group, F a field whose characteristic p divides the order of G and A G the invariant ring of a finite-dimensional FG-module V. In nalogy to modular representation theory we define for any subgroup H ≤ G the (relative) trace-ideal A G H A G to be the image of the relative trace map \(t_H^G:{A^H} \to {A^G},f \mapsto \sum\nolimits_{g \in [G:H]} {g(f)} \). Moreover, for any family χ of subgroups of G, we define the relative trace ideals \(A_\chi ^G: = \sum\nolimits_{X \in \chi } {A_X^G \triangleleft {A^G}} \) and study their behaviour.

If χ consists of proper subgroups of a Sylow p-group PG, then A χ G is always a proper ideal of A G; in fact, we show that its height is bounded above by the codimension of the fixed point space V P. But we also prove that if V is relatively χ-projective, then A χ G still contains all invariants of degree not divisible by p. If V is projective then this result applies in particular to the (absolute) trace ideal A {e} G .

We also give a ‘geometric analysis’ of trace ideals, in particular of the ideal \(A_{ < P}^G: = \sum\nolimits_{Q < P} {A_{{Q^O}}^G} \), and show that \({\mathcal{I}^{G,P}}: = \sqrt {A_{ < P}^G} \) is a prime ideal which has the geometric interpretation as ‘vanishing ideal’ of G-orbits with length coprime to p. It is shown that \({A^G}/{\mathcal{I}^{G,P}}\) is always a Cohen-Macaulay algebra, if the action of P is defined over the prime field. This generalizes a well known result of Hochster and Eagon for the case P = 1 (see [13]). Moreover we prove that if V is a direct summand of a permutation module (i.e. a ‘trivial source module’), then the A χ G are radical ideals and \(A_{ < P}^G/{\mathcal{I}^{G,P}}\). Hence in this case the ideal and the corresponding Cohen-Macaulay quotient can be constructed using relative trace maps.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. J. Alperin: Local Representation Theory, Cambridge Univ. Press 1986.

    Book  MATH  Google Scholar 

  2. D. Benson: Representations and Cohomology I, Cambridge Univ. Press 1991.

    Book  MATH  Google Scholar 

  3. D. Benson: Polynomial Invariants of Finite Groups, Cambridge Univ. Press 1993.

    Book  MATH  Google Scholar 

  4. W. Bruns, J. Herzog: Cohen-Macaulay Rings, Cambridge Univ. Press 1993.

    MATH  Google Scholar 

  5. H.E.A. Campbell, I. Hughes, R.D. Pollack: Rings of Invariants and p-Sylow Subgroups, Canad. Math. Bull.34, (1), 42–47, (1991).

    Article  MathSciNet  MATH  Google Scholar 

  6. C.W. Curtis, I. Reiner: Methods of Representation theory I,II, Wiley Inter-science 1981, 1987.

    Google Scholar 

  7. W. Feit: The Representation Theory of Finite Groups, North-Holland (1982).

    MATH  Google Scholar 

  8. M. Feshbach: p-subgroups of compact Lie groups and torsion of infinite height in H*(BG;Fp), Mich. Math.J. 29, 299–306, (1982).

    MathSciNet  MATH  Google Scholar 

  9. P. Fleischmann: A new degree bound for Vector Invariants of Symmetric Groups,to appear in Transactions of the AMS http://www.exp-math.uni.essen.de/~peter

  10. P. Fleischmann, W. Lempken: On generators of modular invariant rings of finite groups, Bull. London Math. Soc. 29, (585–591), (1997). http://www.exp-math.uni.essen.de/~peter

    Article  MathSciNet  MATH  Google Scholar 

  11. J. Fogarty: Invariant theory, Benjamin (1969).

    MATH  Google Scholar 

  12. M. Göbel: Computing bases for rings of permutation-invariant polynomials, J. Symb. Comp. 19, 285–291, (1995).

    Article  MATH  Google Scholar 

  13. M. Hochster, J.A. Eagon: Cohen-Macaulay rings, invariant theory and the generic perfection of determinantal loci, Amer. J. Math. 93, 1020–1058, (1971).

    Article  MathSciNet  MATH  Google Scholar 

  14. G. Kemper: Calculating invariant rings of finite groups over arbitrary fields, J. of Symbolic Computation, (1995).

    Google Scholar 

  15. K. Kuhnigk: Der Transfer in der modularen Invariantentheorie,Diplomarbeit, Universität Göttingen, (1998).

    Google Scholar 

  16. P. Landrock: Finite Group Algebras and their Modules,LMS Lecture Note Series, Cambridge University Press (1984).

    Google Scholar 

  17. M. Neusel: Mme Bertin’s ℤ/4 revisited, preprint (1997).

    Google Scholar 

  18. M. Neusel: The transfer in the invariant theory of modular representations, preprint, (1997).

    Google Scholar 

  19. L. Smith: Polynomial Invariants of Finite Groups, A.K. Peters Ltd., (1995).

    MATH  Google Scholar 

  20. L. Smith: Modular vector invariants of cyclic permutation representations, preprint (1997).

    Google Scholar 

  21. J.P. Serre: Algebraic groups and Class Fields,Springer, (1975).

    Google Scholar 

  22. R.J. Shank, D.L. Wehlau: The transfer in modular invariant theory,preprint, http://www.mast.queensu.ca/~shank/transfer.dvi (1997).

    Google Scholar 

  23. C. Wilkerson: Rings of invariants and inseparable forms of algebras over the Steenrod algebra, preprint http://hopf.math.purdue.edu/pub/hopf.html (1979).

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Basel AG

About this paper

Cite this paper

Fleischmann, P. (1999). Relative Trace Ideals and Cohen-Macaulay Quotients of Modular Invariant Rings. In: Dräxler, P., Ringel, C.M., Michler, G.O. (eds) Computational Methods for Representations of Groups and Algebras. Progress in Mathematics, vol 173. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8716-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8716-8_12

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9740-2

  • Online ISBN: 978-3-0348-8716-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics