Skip to main content

The Use of Plasmid Microinjection to Study Specific Cell Cycle Phase Transitions

  • Chapter
  • 224 Accesses

Part of the book series: Methods and Tools in Biosciences and Medicine ((MTBM))

Abstract

Progression through the eukaryotic cell cycle is a highly regulated process in which cellular proliferation is dependent on the integration of multiple signals (reviewed in, Hamel and Hanley-Hyde, 1997; Reed, 1997; Del Sal et al., 1996; Sherr, 1996; Palmero and Peters, 1996). Diverse extracellular signals such as growth factors, adhesion, and nutrient availability, as well as intracellular signals such as cell size and genomic integrity, must be monitored for proper proliferation. Mis-regulation of cellular proliferation, as occurs in cancer cells, can often be traced to mutations which influence cell cycle transitions, particularly those involved in the decision to engage in genome replication (Palmero and Peters, 1996; Hamel and Hanley-Hyde, 1997; Sherr, 1996; Hunter and Pines, 1995).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bartek J, Bartkova J, Lukas J (1996) The retinoblastoma protein pathway and the restriction point. Current Op Cell Biol 8(6): 805–814.

    Article  CAS  Google Scholar 

  • Beijersbergen RL, Bernards R (1996) Cell cycle regulation by the retinoblastoma family of growth inhibitory proteins. Biochim Biophys Acta 1287(2-3): 103–120.

    PubMed  Google Scholar 

  • Bremner R, Du DC, Connolly-Wilson MJ, Bridge P, Ahmad KF, Mostachfi H, Rushlow D, Dunn JM, Gallie BL (1997) Deletion of RB exons 24 and 25 causes lowpenetrance retinoblastoma. Am J Human Genetics 61: 556–570.

    Article  CAS  Google Scholar 

  • Connell-Crowley L, Harper JW, Goodrich DW (1997) Cyclin Dl/Cdk4 regulates retinoblastoma protein-mediated cell cycle arrest by site-specific phosphorylation. Molecular Biol CeU 8: 287–301.

    CAS  Google Scholar 

  • DelSal, G, Loda, M, Pagano, M (1996) CeU cycle and cancer: Critical events at the Gl restriction point. Crit. Rev. Onc. V7 Nl2: 127–142.

    Article  Google Scholar 

  • Elledge SJ (1996) CeU cycle checkpoints: preventing an identity crisis. Science 274: 1664–1672.

    Article  PubMed  CAS  Google Scholar 

  • Goodrich DW, Wang NP, Qian YW, Lee EY, Lee WH (1991) The retinoblastoma gene product regulates progression through the Gl phase of the cell cycle. Cell 67: 293–302.

    Article  PubMed  CAS  Google Scholar 

  • Hannon GJ, Beach D (1994) pl5INK4B is a potential effector of TGF-beta-induced cell cycle arrest. Nature 371: 257–261.

    Article  PubMed  CAS  Google Scholar 

  • Hamel PA, Hanley-Hyde J (1997) Gl cyclins and control of the cell division cycle in normal and transformed cells. Cancer Investigation 2: 143–152.

    Article  Google Scholar 

  • Hamel PA, Phillips RA, Muncaster M, Gallie BL (1993) Speculations on the roles of RBI in tissue-specific differentiation, tumor initiation, and tumor progression. Faseb Journal 10: 846–854.

    Google Scholar 

  • Herrera RE, Sah VP, Williams BO, Makela TP, Weinberg RA, Jacks T (1996) Altered cell cycle kinetics, gene expression, and Gl restriction point regulation in Rb-deficient fibroblasts. Molecular Cell Biol 5: 2402–2407.

    Google Scholar 

  • Hinds PW, Mittnacht S, Dulic V, Arnold A, Reed SI, Weinberg RA (1992) Regulation of retinoblastoma protein functions by ectopic expression of human cyclins. Cell 70: 993–1006.

    Article  PubMed  CAS  Google Scholar 

  • Hunter T, Pines J (1994) Cyclins and cancer. II: Cyclin D and CDK inhibitors come of age. Cell 79: 573–582.

    Article  PubMed  CAS  Google Scholar 

  • Kaelin WG Jr (1997) Recent insights into the functions of the retinoblastoma susceptibility gene product. Cancer Investigation 15: 243–254.

    Article  PubMed  Google Scholar 

  • Kaul SC, Mitsui Y, Komatsu Y, Reddel RR, Wadhwa R (1996) A highly expressed 81 kDa protein in immortalized mouse fibroblast: its proliferative function and identity with ezrin. Oncogene 13: 1231–1237.

    PubMed  CAS  Google Scholar 

  • King RW, Deshaies RJ, Peters JM, Kirschner MW (1996) How proteolysis drives the cell cycle. Science 274: 1652–1659.

    Article  PubMed  CAS  Google Scholar 

  • Knudsen ES, Wang JY (1997) Dual mechanisms for the inhibition of E2F binding to RB by cyclin-dependent kinase-mediated RB phosphorylation. Molecular Cell Biol 17: 5771–5783.

    CAS  Google Scholar 

  • Knudsen ES, Chen TT, Buckmaster C, Feramisco JR, Wang JY (1998) Inhibition of DNA synthesis by RB: distinct effect on the Gl/S transition and S-phase progression. Genes and Development 12: 2278–2292.

    Article  PubMed  CAS  Google Scholar 

  • Koh J, Enders GH, Dynlacht BD, Harlow E (1995) Tumour-derived pl6 alleles encoding proteins defective in cell-cycle inhibition. Nature 375: 506–510.

    Article  PubMed  CAS  Google Scholar 

  • Leng XH, Connell Crowley L, Goodrich D, Harper JW (1997) S-phase entry upon ectopic expression of Gl cyclin-dependent kinases in the absence of retinoblastoma protein phosphorylation. Current Biology, V7 N9: 709–712.

    Article  Google Scholar 

  • Lukas J, Parry D, Aagaard L, Mann DJ, Bartkova J, Strauss M, Peters G, Bartek J (1995) Retinoblastoma-protein-dependent cell-cycle inhibition by the tumour suppressor p16. Nature 375: 503–506.

    Article  PubMed  CAS  Google Scholar 

  • Lukas J, Muller H, Bartkova J, Spitkovsky D, Kjerulff AA, Jansen-Durr P, Strauss M, Bartek J (1994) DNA tumor virus oncoproteins and retinoblastoma gene mutations share the ability to relieve the cell’s requirement for cyclin D1 function in Gl. J Cell Biology 125: 625–638.

    Article  CAS  Google Scholar 

  • Lukas J, Herzinger T, Hansen K, Moroni MC, Resnitzky D, Heklin K, Reed SI, Bartek J (1997) Cyclin E-induced S phase without activation of the pRb/E2F pathway. Genes Development 11: 1479–1492.

    Article  PubMed  CAS  Google Scholar 

  • Ohtsubo M, Theodoras AM, Schumacher J, Roberts JM, Pagano M (1995) Human cyclin E, a nuclear protein essential for the G1-to-S phase transition. Molecular Cell Biology 15: 2612–2624.

    CAS  Google Scholar 

  • Otterson, GA, Chen, WD, Coxon, AB, Khleif, SN, Kaye FJ (1997) Incomplete penetrance of familial retinoblastoma linked to germ-line mutations that result in partial loss of RB function. Proc Natl Acad Sci USA V94 N22: 12036–12040.

    Article  Google Scholar 

  • Pagano M, Pepperkok R, Verde F, Ansorge W, Draetta G (1992) Cyclin A is required at two points in the human cell cycle. Embo J 11: 961–971.

    PubMed  CAS  Google Scholar 

  • Palmero I, Peters G (1996) Perturbation of cell cycle regulators in human cancer. Cancer Surveys 27: 351–367.

    PubMed  CAS  Google Scholar 

  • Puri PL, Avantaggiati ML, Balsano C, Sang N, Graessmann A, Giordano A, Levrero M (1997) p300 is required for MyoD-dependent cell cycle arrest and musclespecific gene transcription. Embo J 16: 369–383.

    Article  PubMed  CAS  Google Scholar 

  • Reed SI (1997) Control of the G(l)/S transition. Cancer Surveys V29: 7–23.

    Google Scholar 

  • Resnitzky D, Gossen M, Bujard H, Reed SI (1994) Acceleration of the G1/S phase transition by expression of cyclins D1 and E with an inducible system. Molecular and Cellular Biology 14: 1669–1679.

    PubMed  CAS  Google Scholar 

  • Rose DW, McCabe G, Feramisco JR, Adler M (1992) Expression of c-fos and AP-1 activity in senescent human fibroblasts is not sufficient for DNA synthesis. J. Cell Biology 268: 1405–1411.

    Article  Google Scholar 

  • Sherr CJ (1994) G1 phase progression: cycling on cue. Cell 79: 551–555.

    Article  PubMed  CAS  Google Scholar 

  • Sherr CJ (1996) Cancer cell cycles. Science 274: 1672–1677.

    Article  PubMed  CAS  Google Scholar 

  • Sidle A, Palaty C, Dirks P, Wiggan O, Kiess M, Gill RM, Wong AK, Hamel PA (1996) Activity of the retinoblastoma family proteins, pRB, pl07, and pl30, during cellular proliferation and differentiation. Crit Rev Biochem Molecular Biol 31: 237–271.

    Article  CAS  Google Scholar 

  • Thorburn A, Thorburn J, Chen SY, Powers S, Shubeita HE, Feramisco JR, Chien KR (1993) Hras dependent pathway for cardiac muscle hypertrophy. J Biol Chem 268: 2244–2249.

    PubMed  CAS  Google Scholar 

  • Tsai LH, Lees E, Faha B, Harlow E, Riabowol K (1993) The cdk2 kinase is required for the G1-to-S transition in mammalian cells. Oncogene 8: 1593–1602.

    PubMed  CAS  Google Scholar 

  • Wang JY, Knudsen ES, Welch PJ (1994) The retinoblastoma tumor suppressor protein. Advances Cancer Res 64: 25–85.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Basel AG

About this chapter

Cite this chapter

Knudsen, E.S. (1999). The Use of Plasmid Microinjection to Study Specific Cell Cycle Phase Transitions. In: Lacal, J.C., Feramisco, J., Perona, R. (eds) Microinjection. Methods and Tools in Biosciences and Medicine. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8705-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8705-2_3

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-7643-6019-1

  • Online ISBN: 978-3-0348-8705-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics