Skip to main content

Functional Expression of G Protein-Coupled Receptors in Xenopus laevis Oocytes

  • Chapter
Microinjection

Part of the book series: Methods and Tools in Biosciences and Medicine ((MTBM))

  • 226 Accesses

Abstract

Since the demonstration by Gurdon et al. (1971) that injection of foreign mRNA into Xenopus laevis oocytes leads to efficient and accurate translation of the encoded proteins, the oocyte system has been widely used as a tool for the study and/or cloning of receptors, ion channels and transporters. In fact, the oocyte is particularly useful as a general expression system because: i) its large size, which facilitates manipulations such as microinjection and electrode penetration, ii) the possibility to perform a variety of functional measurements using different technical approaches which include electrophysiological recordings, fluorescent dyes detection, binding of radioligands and flux measurements, and iii) the ability of the oocytes not only to express a wide variety of exogenous proteins, but also to perform postranslational processing of the newly synthesized entities (e.g. signal peptide cleavage, glycosylation, phosphorylation and subunit assembly). In this report we will focus mainly on the utility of the oocytes for expression of exogenous receptors. Some especial emphasis would be placed on studies from our laboratory centered in the expression of the thyrotropin-releasing hormone (TRH) receptor from rat adenohypophyseal cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barhanin J, Lesage F, Guillemare E et al. (1996) KVLQT1 and IsK (minK) proteins associate to form the IKs cardiac potassium current. Nature 384: 78–80.

    Article  PubMed  CAS  Google Scholar 

  • de la Peña P, Delgado LM, del Camino D, Barros F (1992a) Cloning and expression of the thyrotropin-releasing hormone receptor from GH3 rat anterior pituitary cells. Biochem J 284: 891–899.

    PubMed  Google Scholar 

  • de la Pena, P, Delgado, LM, del Camino, D, Barros, F (1992b) Two isoforms of the thyrotropin-releasing hormone receptor generated by alternative splicing have indistinguishable functional properties. J Biol Chem 267: 25703–25708.

    PubMed  Google Scholar 

  • de la Pena P, del Camino D, Pardo LA et al. (1995) Gs couples thyrotropin-releasing hormone receptors expressed in Xenopus oocytes to phospholipase C. J Biol Chem 270: 3554–3559.

    Article  PubMed  Google Scholar 

  • del Camino D, Barros F, Pardo LA, de la Pena P (1997) Altered ligand dissociation rates in thyrotropin-releasing hormone receptors mutated in glutamine 105 of transmembrane helix III. Biochemistry 36: 3308–3318

    Article  PubMed  CAS  Google Scholar 

  • Duerson K, Carro UR, Clapham. D. (1993) ahelical distorting substitutions disrupt coupling between m3 muscarinic receptor and G proteins. FEBS Lett 324: 103–108.

    Article  PubMed  CAS  Google Scholar 

  • Duzic E, Coupry I, Downing S, Lanier, SM (1992) Factors determining the specificity of signal transduction by guanine nucleotide-binding protein-coupled receptors. I. Coupling of a2-adrenergic receptor subtypes to distinct G-proteins. J Biol Chem 267: 9844–9851.

    PubMed  CAS  Google Scholar 

  • Fong TM, Huang RC, Strader CD (1992) Localization of agonist and antagonist binding domains of the human neurokinin-1 receptor. J Biol Chem 267: 25664–25667.

    PubMed  CAS  Google Scholar 

  • Grygorczyk R, Abramovitz M, Boie Y et al. (1995) Detection of adenylate cyclasecoupled receptors in Xenopus oocytes by coexpression with cystic fibrosis transmembrane conductance regulator. Anal Biochem 227: 27–31.

    Article  PubMed  CAS  Google Scholar 

  • Gurdon JB, Lane CD, Woodland HR, Marbaix G (1971) Use of frog eggs and oocytes for the study of messenger RNA and its translation in living cells. Nature 233: 177–182.

    Article  PubMed  CAS  Google Scholar 

  • Hedin KE, Lim NF, Clapham DE (1996) Cloning of a Xenopus laevis inwardly rectifying K+ channel subunit that permits GIRK1 expression of Ikach currents in oocytes. Neuron 16: 423–429.

    Article  PubMed  CAS  Google Scholar 

  • Jentsch TJ, Steinmeyer K, Schwarz G (1990) Primary structure of Torpedo marmorata chloride channel isolated by expression cloning in Xenopus oocytes. Nature 348: 510–514.

    Article  PubMed  CAS  Google Scholar 

  • Kaneko S, Takahashi H, Satoh M (1992) Metabotropic responses to acetylcholine and serotonin of Xenopus oocytes injected with rat brain mRNA are transduced by different G proteins. FEBS Lett 299: 179–182.

    Article  PubMed  CAS  Google Scholar 

  • Kobilka BK, MacGregor C, Daniel K et al. (1987) Functional activity and regulation of human β2-adrenergic receptors expressed in Xenopus oocytes. J Biol Chem 262: 15796–15802.

    PubMed  CAS  Google Scholar 

  • Kobilka BK, Kobilka TS, Daniel K et al. (1988) Chimeric α2,β2-adrenergic receptors: delineation of domains involved in effector coupling and ligand binding specificity. Science 240: 1310–1316.

    Article  PubMed  CAS  Google Scholar 

  • Kubo T, Bujo H, Akiba I et al. (1988) Location of a region of the muscarinic acetylcholine receptor involved in selective effector coupling. FEBS Lett 241: 119–125.

    Article  PubMed  CAS  Google Scholar 

  • Kunkel MT, Peralta EG (1993) Charged amino acids required for signal transduction by the m3 muscarinic acetylcholine receptor. EMBO J 12: 3809–3015.

    PubMed  CAS  Google Scholar 

  • Kushner L, Lerma J, Bennett MVL, Zukin RS (1989) Using the Xenopus ooeyte system for expression and cloning of neuroreceptors and channels. Meth Neurosci 1: 3–28.

    Google Scholar 

  • Lechleiter J, Hellmiss R, Duerson K et al. (1990) Distinct sequence elements control the specificity of G protein activation by muscarinic acetylcholine receptor subtypes. EMBO J 9: 4381–4390

    PubMed  CAS  Google Scholar 

  • Lester HA (1988) Heterologous expression of excitability proteins: route to more specific drugs?. Science 241: 1057–1063.

    Article  PubMed  CAS  Google Scholar 

  • Lipinsky D, Nussenzveig DR, Gershengorn MC, Oron Y (1995) Desensitization of the response to thyrotropin-releasing hormone in Xenopus oocytes is an amplified process that precedes calcium mobilization. Pflügers Arch 429: 419–425.

    Article  PubMed  CAS  Google Scholar 

  • Lübbert H, Hoffman BJ, Snutch TP et al. (1987) cDNA cloning of a serotonin 5HT1c receptor by electrophysiological assays of mRNA-injected Xenopus oocytes. Proc Natl Acad Sci USA 84: 4332–4336.

    Article  PubMed  Google Scholar 

  • Mahlmann S, Meyerhof W, Schwarz JR (1989) Different roles of IP4 and IP3 in the signal pathway coupled to the TRH receptor in microinjected Xenopus oocytes. FEBS Lett 249: 108–112.

    Article  CAS  Google Scholar 

  • Masu Y, Nakayama K, Tamaki H et al. (1987) cDNA cloning of bovine substance-K receptor through oocyte expression system. Nature 329: 836–838.

    Article  PubMed  CAS  Google Scholar 

  • Milligan G (1993) Mechanisms of multifunctional signalling by G protein-linked receptors. Trends Pharmacol Sci 14: 239–244.

    Article  PubMed  CAS  Google Scholar 

  • Moriarty TM, Sealfon SC, Carty DJ et al. (1989) Coupling of exogenous receptors to phospholipase C in Xenopus oocytes through pertussis toxin-sensitive and-insensitive pathways. Crosstalk through heterotrimeric G-proteins. J Biol Chem 264: 13524–13530.

    PubMed  CAS  Google Scholar 

  • Moriarty TM, Landau EM (1990) Xenopus ooeyte as model system to study receptor coupling to phospholipase C. In: G proteins (Iyengar R, Birnbaumer L, eds.) pp. 479–501, Academic Press, San Diego, CA, USA.

    Google Scholar 

  • O′Dowd BF, Hnatowich M, Regan JW et al. (1988) Site-directed mutagenesis of the cytoplasmic domains of the human β2adrenergic receptor. Localization of regions involved in G protein-receptor coupling. J Biol Chem 263: 15985–15992.

    PubMed  Google Scholar 

  • Oron Y, Straub RE, Traktman P, Gershengorn MC (1987) Decreased TRH receptor mRNA activity precedes homologous downregulation: assay in oocytes. Science 238: 1406–1408.

    Article  PubMed  CAS  Google Scholar 

  • Pin J-P, Waeber C, Prezeau L et al. (1992) Alternative splicing generates metabotropic glutamate receptors inducing different patterns of calcium release in Xenopus oocytes. Proc Natl Acad Sci USA 89: 10331–10335.

    Article  PubMed  CAS  Google Scholar 

  • Pin J-P, Joly C, Heinemann SF, Bockaert J (1994) Domains involved in the specificity of G protein activation in phospholipase C-coupled metabotropic glutamate receptors. EMBO J 13: 342–348.

    PubMed  CAS  Google Scholar 

  • Quick MW, Simon MI, Davidson N et al. (1994) Differential coupling of G protein a subunits to seven-helix receptors expressed in Xenopus oocytes. J Biol Chem 269: 30164–30172.

    PubMed  CAS  Google Scholar 

  • Rimland JM, Seward EP, Humbert Y et al. (1996) Coexpression with potassium channel subunits used to clone the Y2 receptor for neuropeptide Y. Mol Pharmacol 49: 387–90.

    PubMed  CAS  Google Scholar 

  • Rudy B, Iverson LE (eds) (1992) Ion channels. Meth Enzymol vol. 207.

    Google Scholar 

  • Sanguinetti MC, Curran ME, Zou A et al. (1996) Coassembly of KVLQT1 and minK (IsK) proteins to form cardiac IKs potassium channel. Nature 384: 80–83.

    Article  PubMed  CAS  Google Scholar 

  • Schultz P, Stannek P, Bischoff SC et al. (1992a) Functional reconstitution of a receptor-activated signal transduction pathway in Xenopus laevis oocytes using the cloned human C5a receptor. Cell Signaling 4: 153–161.

    Article  CAS  Google Scholar 

  • Schultz P, Stannek P, Voigt M et al. (1992b) Complementation of formyl peptide receptor-mediated signal transduction in Xenopus laevis oocytes. Biochem J 284: 207–212.

    PubMed  CAS  Google Scholar 

  • Singer D, Boton R, Moran O, Dascal N (1990) Short-and long-term desensitization of serotonergic response in Xenopus oocytes with brain RNA: roles for IP3 and protein quinase C. Pflugers Arch 416: 7–16.

    Article  PubMed  CAS  Google Scholar 

  • Snutch TP (1988) The use of Xenopus oocytes to probe synaptic communication. Trends Neurosci 11: 250–256.

    Article  PubMed  CAS  Google Scholar 

  • Stehno-Bittel L, Krapivinsky G, Krapivinsky L et al. (1995) The G protein βγ subunit transduces the muscarinic receptor signal for Ca2+ release in Xenopus oocytes. J Biol Chem 270: 30068–30074.

    Article  PubMed  CAS  Google Scholar 

  • Straub RE, Oron Y, Gillo B et al. (1989) Receptor number determines latency and amplitude of the thyrotropin-releasing hormone response in Xenopus oocytes injected with pituitary RNA. Mol Endocrinol 3: 907–914.

    Article  PubMed  CAS  Google Scholar 

  • Taylor CW (1990)The role of G proteins in transmembrane signaling. Biochem J 272: 1–13.

    PubMed  CAS  Google Scholar 

  • Vallar L, Muca C, Magni M et al. (1990) Differential coupling of dopamine D2 receptors expressed in different cell types. Stimulation of phosphatidylinositol 4,5-bisphosphate hydrolysis in LtK-fibroblasts, hyperpolarization, and cytosolic-free Ca concentration decrease in GH4C1 cells. J Biol Chem 265: 10320–10326.

    PubMed  CAS  Google Scholar 

  • Walter AE, Hoger JH, Labarca C et al. (1991) Low molecular weight mRNA encodes a protein that controls serotonin 5-HT1c and acetylcholine Ml receptor sensitivity in Xenopus oocytes. J Gen Physiol 98: 399–417.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Basel AG

About this chapter

Cite this chapter

de la Peña, P., Barros, F. (1999). Functional Expression of G Protein-Coupled Receptors in Xenopus laevis Oocytes. In: Lacal, J.C., Feramisco, J., Perona, R. (eds) Microinjection. Methods and Tools in Biosciences and Medicine. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8705-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8705-2_16

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-7643-6019-1

  • Online ISBN: 978-3-0348-8705-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics