Skip to main content

Bergman-Toeplitz and pseudodifferential operators

  • Chapter
Complex Analysis and Related Topics

Part of the book series: Operator Theory Advances and Applications ((OT,volume 114))

  • 329 Accesses

Abstract

We show that the problem of studying the Bergman-Toeplitz operators with functional symbols on a plane domain is, in a certain sense, the problem of studying the pseudodifferential operators on a half-line.

The symbols of the pseudodifferential operators we obtain are slowly varying in the additive sense at +∞ and in the multiplicative sense at 0 in the variable x.With respect to the dual variable the operators are a mixture of additive Wiener-Hopf operators and multiplicative Mellin convolutions.

The essential spectra of operators from the Toeplitz operator algebra are in general massive (have positive plain Lebesgue measure).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Axler, Bergman spaces and their operators, Surveys on Some Recent Results in Operator Theory, Vol I, Pitman Research Notes in Math. 171, (1988) 1–50.

    MathSciNet  Google Scholar 

  2. S. Axler, J. Conway and G. McDonald, Toeplitz operators on Bergman spaces, Can. J. Math., 34, (1982) 466–483.

    Article  MathSciNet  MATH  Google Scholar 

  3. V. Bergman, On a Hilbert space of analytic functions, Comm. Pure Appl. Math., 3, (1961) 215–228.

    Google Scholar 

  4. F. A. Berezin, Wick and anti-Wick symbol of operators, Math. USSR Sbornik, 84, (1971) 578–610.

    MathSciNet  Google Scholar 

  5. F. A. Berezin, Method of second Quantization, Nauka, Moscow (1988).

    Google Scholar 

  6. H. O. Cordes, Pseudo-differential operators on a half-line, J. Math. Mech., 18, (9) (1969) 893–908.

    MathSciNet  MATH  Google Scholar 

  7. J. Danus and K. H. Hofmann, Representation of Rings by Sections, Memoirs Amer. Math. Soc, 83, (1968).

    Google Scholar 

  8. R. G. Douglas, Banach Algebras Techniques in Operator Theory, Academic Press, (1972).

    Google Scholar 

  9. I. Gohberg and N. Krupnik, One-dimensional linear sigular equations, Vol. 2, General theory and applications, Birkhauser Verlag, Basel (1992).

    Book  Google Scholar 

  10. K. H. Hofmann, Representation of algebras by continuous functions, Bull. Amer. Math. Soc, 78, (3) (1972) 291–373.

    Article  MathSciNet  MATH  Google Scholar 

  11. G. McDonald and C. Sundberg, Toeplitz operators on the disc, Indiana Math. J., 28, (1979) 595–611.

    Article  MathSciNet  MATH  Google Scholar 

  12. V. S. Rabinovich, Singular integral operators on complicated contours and pseudodiferential operators, Math. Notes, 58, (1995) 772–734.

    Article  MathSciNet  Google Scholar 

  13. M. E. Taylor, Pseudodiferential operators, Princeton University Press, New Jersey, (1981).

    Google Scholar 

  14. J. Varela, Duality on C* -algebras, Meomories Amer. Math. Soc, 148, (1974) 97–108.

    MathSciNet  MATH  Google Scholar 

  15. N. L. Vasilevski, Banach Algebras generated by two-dimensional integral operators with Bergman kernel and pice-wise continuous coefficientes,I, Soviet Math. (Izv. VUZ), 30, (3) (1986) 14–24.

    Google Scholar 

  16. N. L. Vasilevski, Convolution operators on standard CR-manifold,II. Algebras of convolution operators on the Heisenberg group, Integr. Equat, Oper. Th., 19, (1994) 327–348.

    Article  MathSciNet  MATH  Google Scholar 

  17. N. L. Vasilevski, On Bergman-Toepliz operators with commutative symbol algebras, Integr. Equat, Oper, Th., (to appear).

    Google Scholar 

  18. N. L. Vasilevski, On the structure of Bergman and poly-Bergman spaces,Integr. Equat, Oper, Th., (to appear).

    Google Scholar 

  19. V. S. Vladimirov, Equations of Mathematical Physics, Nauka, Moskow, Russia (1981) 327–348.

    Google Scholar 

  20. Kehe Zhu, VMO, ESV, and Toeplitz operators on the Bergman space, Trans. AMer, Math. Soc., 302, (1987) 617–646.

    Google Scholar 

  21. Kehe Zhu, Operator Theory in Function Spaces, Marcel Dekker, Ins., (1990) 617–646.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Basel AG

About this chapter

Cite this chapter

Rabinovich, V., Vasilevski, N. (2000). Bergman-Toeplitz and pseudodifferential operators. In: de Arellano, E.R., Vasilevski, N.L., Shapiro, M., Tovar, L.M. (eds) Complex Analysis and Related Topics. Operator Theory Advances and Applications, vol 114. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8698-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8698-7_15

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9734-1

  • Online ISBN: 978-3-0348-8698-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics